Development Via Information Self-structuring of Sensorimotor Experience and Interaction | SpringerLink
Skip to main content

Development Via Information Self-structuring of Sensorimotor Experience and Interaction

  • Chapter
50 Years of Artificial Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4850))

  • 4813 Accesses

Abstract

We describe how current work in Artificial Intelligence is using rigorous tools from information theory, namely information distance and experience distance to organize the self-structuring of sensorimotor perception, motor control, and experiential episodes with extended temporal horizon. Experience is operationalized from an embodied agent’s own perspective as the flow of values taken by its sensors and effectors (and possibly other internal variables) over a temporal window. Such methods allow an embodied agent to acquire the sensorimotor fields and control structure of its own body, and are being applied to pursue autonomous scaffolded proximal development in the zone between the familiar experience and the unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lungarella, M., Metta, G., Pfeifer, R., Sandini, G.: Developmental robotics: A survey. Connection Science 15(4), 151–190 (2003)

    Article  Google Scholar 

  2. Lungarella, M., Sporns, O.: Information self-structuring: Key principles for learning and development. In: ICDL 2005. Proc. of 4th International Conference on Development and Learning, pp. 25–30 (2005)

    Google Scholar 

  3. Shannon, C.E.: A mathematical theory of communication. Bell Systems Technical Journal 27, 379–423, 623–656 (1948)

    MathSciNet  Google Scholar 

  4. Olsson, L., Nehaniv, C.L., Polani, D.: Sensory channel grouping and structure from uninterpreted sensor data. In: 2004 NASA/DoD Conference on Evolvable Hardware, Seattle, Washington, USA, June 24-26, 2004, pp. 153–160. IEEE Computer Society Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  5. Olsson, L., Nehaniv, C.L., Polani, D.: From unknown sensors and actuators to actions grounded in sensorimotor perceptions. Connection Science 18(2), 121–144 (2006)

    Article  Google Scholar 

  6. Pierce, D., Kuipers, B.: Map learning with uninterpreted sensors and effectors. Artificial Intelligence 92, 169–229 (1997)

    Article  MATH  Google Scholar 

  7. Philipona, D., O’Regan, J.K., Nadal, J.P.: Is there something out there? Inferring space from sensorimotor dependencies. Neural Computation 15(9) (2003)

    Google Scholar 

  8. Mirza, N.A., Nehaniv, C.L., Dautenhahn, K., te Boekhorst, R.: Using sensory-motor phase-plots to characterise robot-environment interactions. In: CIRA 2005. Proc. of 6th IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 581–586. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  9. Kaplan, F., Hafner, V.: Mapping the space of skills: An approach for comparing embodied sensorimotor organizations. In: ICDL 2005. Proceedings of the 4th IEEE International Conference on Development and Learning, pp. 129–134. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  10. Mirza, N.A., Nehaniv, C.L., Dautenhahn, K., te Boekhorst, R.: Interaction histories: From experience to action and back again. In: ICDL 2006. Proceedings of the 5th IEEE International Conference on Development and Learning, Bloomington, IN, USA, IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  11. te Boekhorst, R., Lungarella, M., Pfeifer, R.: Dimensionality reduction through sensory-motor coordination. In: Kaynak, O., Alpaydin, E., Öja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 496–503. Springer, Heidelberg (2003)

    Google Scholar 

  12. Mirza, N.A., Nehaniv, C.L., Dautenhahn, K., te Boekhorst, R.: Grounded sensorimotor interaction histories in an information theoretic metric space for robot ontogeny. Adaptive Behavior 15(2), 167–187 (2007)

    Article  Google Scholar 

  13. Crutchfield, J.: Information and its metric. In: Lam, L., Morris, H.C. (eds.) Nonlinear Structures in Physical Systems - Pattern Formation, Chaos and Waves, pp. 119–130. Springer-Verlag, New York (1990)

    Google Scholar 

  14. Mirza, N.A., Nehaniv, C.L., Dautenhahn, K., te Boekhorst, R.: Using temporal information distance to locate sensorimotor experience in a metric space. In: CEC 2005. Proc. of 2005 IEEE Congress on Evolutionary Computation, Edinburgh, Scotland, UK, 2-5 September 2005, vol. 1, pp. 150–157. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  15. Nehaniv, C.L., Polani, D., Olsson, L., Klyubin, A.S.: Information-theoretic modeling of sensory ecology. In: Laubichler, M., Müller, G.B. (eds.) Modeling Biology: Structures, Behavior, Evolution. The Vienna Series in Theoretical Biology, MIT Press, Cambridge (in press)

    Google Scholar 

  16. Chklovskii, D.B., Koulakov, A.A.: Maps in the brain: What can we learn from them? Annu. Rev. Neurosci. 27, 369–392 (2004)

    Article  Google Scholar 

  17. Diamond, M.E., Petersen, R.S., Harris, J.A.: Learning through maps: Functional significance of topographic organization in the primary sensory cortex. J. Neurobiol. 41, 64–68 (1999)

    Article  Google Scholar 

  18. Olsson, L., Nehaniv, C.L., Polani, D.: Measuring informational distances between sensors and sensor integration. In: Artificial Life X, MIT Press, Cambridge (2006)

    Google Scholar 

  19. King, A.J.: Sensory experience and the formation of a computational map of auditory space in the brain. BioEssays 21(11), 900–911 (1999)

    Article  Google Scholar 

  20. Knudsen, E.I., Brainard, M.S.: Creating a unified representation of visual and auditory space in the brain. Annual Review of Neuroscience 18, 19–43 (1995)

    Article  Google Scholar 

  21. King, A.J.: The superior colliculus. Current Biology 14(4), R335–R338 (2004)

    Article  Google Scholar 

  22. Nehaniv, C.L., Dautenhahn, K., Loomes, M.J.: Constructive biology and approaches to temporal grounding in post-reactive robotics. In: McKee, G.T., Schenker, P., (eds.) Sensor Fusion and Decentralized Control in Robotics Systems II (September 19-20, Boston, Massachusetts), Proceedings of SPIE. vol. 3839 pp. 156–167 (1999)

    Google Scholar 

  23. Dautenhahn, K., Christaller, T.: Remembering, rehearsal and empathy - towards a social and embodied cognitive psychology for artifacts. In: Ó Nualláin, S., McKevitt, P., Mac Aogáin, E., (eds.) Two Sciences of the Mind: Readings in Cognitive Science and Consciousness. John Benjamins North America Inc. pp. 257–282 (1996)

    Google Scholar 

  24. Nehaniv, C.L.: Sensorimotor experience and its metrics. In: Proc. of 2005 IEEE Congress on Evolutionary Computation, Edinburgh, Scotland, UK, 2-5 September 2005, vol. 1, pp. 142–149. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

  25. Nehaniv, C.L., Mirza, N.A., Dautenhahn, K., te Boekhorst, R.: Extending the temporal horizon of autonomous robots. In: Murase, K., Sekiyama, K., Kubota, N., Naniwa, T., Sitte, J. (eds.) AMiRE 2005. Proc. of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment, pp. 389–395. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Bruner, J.S., Sherwood, V.: Peekaboo and the learning of rule structures. In: Bruner, J., Jolly, A., Sylva, K. (eds.) Play: Its Role in Development and Evolution, pp. 277–285. Penguin, New York (1975)

    Google Scholar 

  27. Rochat, P., Querido, J.G., Striano, T.: Emerging sensitivity to the timing and structure of protoconversation in early infancy. Developmental Psychology 35(4), 950–957 (1999)

    Article  Google Scholar 

  28. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience 3, 919–926 (2000)

    Article  Google Scholar 

  29. Izhikevich, E.M.: Polychronization: Computation with spikes. Neural Computation 18, 245–282 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Max Lungarella Fumiya Iida Josh Bongard Rolf Pfeifer

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nehaniv, C.L., Mirza, N.A., Olsson, L. (2007). Development Via Information Self-structuring of Sensorimotor Experience and Interaction. In: Lungarella, M., Iida, F., Bongard, J., Pfeifer, R. (eds) 50 Years of Artificial Intelligence. Lecture Notes in Computer Science(), vol 4850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77296-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77296-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77295-8

  • Online ISBN: 978-3-540-77296-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics