Parallelism Increases Iterative Learning Power | SpringerLink
Skip to main content

Parallelism Increases Iterative Learning Power

  • Conference paper
Algorithmic Learning Theory (ALT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4754))

Included in the following conference series:

  • 2280 Accesses

Abstract

Iterative learning (\(\textbf{It}\)-learning) is a Gold-style learning model in which each of a learner’s output conjectures may depend only upon the learner’s current conjecture and the current input element. Two extensions of the \(\textbf{It}\)-learning model are considered, each of which involves parallelism. The first is to run, in parallel, distinct instantiations of a single learner on each input element. The second is to run, in parallel, n individual learners incorporating the first extension, and to allow the n learners to communicate their results. In most contexts, parallelism is only a means of improving efficiency. However, as shown herein, learners incorporating the first extension are more powerful than \(\textbf{It}\)-learners, and, collective learners resulting from the second extension increase in learning power as n increases. Attention is paid to how one would actually implement a learner incorporating each extension. Parallelism is the underlying mechanism employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arikawa, S., Miyano, S., Shinohara, A., Kuhara, S., Mukouchi, Y., Shinohara, T.: A machine discovery from amino-acid-sequences by decision trees over regular patterns. New Generation Computing 11, 361–375 (1993)

    Article  MATH  Google Scholar 

  • Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and System Sciences 21, 46–62 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  • Brazma, A., Ukkonen, E., Vilo, J.: Discovering unbounded unions of regular pattern languages from positive examples. In: Nagamochi, H., Suri, S., Igarashi, Y., Miyano, S., Asano, T. (eds.) ISAAC 1996. LNCS, vol. 1178, Springer, Heidelberg (1996)

    Google Scholar 

  • Case, J.: Periodicity in generations of automata. Mathematical Systems Theory 8, 15–32 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Case, J.: Infinitary self-reference in learning theory. Journal of Experimental and Theoretical Artificial Intelligence 6, 3–16 (1994)

    Article  MATH  Google Scholar 

  • Carlucci, L., Case, J., Jain, S., Stephan, F.: Memory-limited U-shaped learning. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 244–258. Springer, Heidelberg (2006)

    Google Scholar 

  • Case, J., Jain, S., Kaufmann, S., Sharma, A., Stephan, F.: Predictive learning models for concept drift. Theoretical Computer Science, Special Issue for ALT 1998, 268, 323–349 (2001)

    Google Scholar 

  • Case, J., Jain, S., Lange, S., Zeugmann, T.: Incremental concept learning for bounded data mining. Information and Computation 152, 74–110 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Case, J., Lynes, C.: Machine inductive inference and language identification. In: Nielsen, M., Schmidt, E.M. (eds.) Automata, Languages, and Programming. LNCS, vol. 140, pp. 107–115. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  • Case, J., Moelius, S.E.: U-shaped, iterative, and iterative-with-counter learning. In: COLT 2007. LNCS(LNAI), vol. 4539, pp. 172–186. Springer, Berlin (2007)

    Google Scholar 

  • Case, J., Moelius, S.E.: U-shaped, iterative, and iterative-with-counter learning (expanded version). Technical report, University of Delaware (2007), Available at http://www.cis.udel.edu/~moelius/publications

  • Davis, M., Sigal, R., Weyuker, E.: Computability, Complexity, and Languages, 2nd edn. Academic Press, London (1994)

    Google Scholar 

  • Fulk, M., Jain, S., Osherson, D.: Open problems in Systems That Learn. Journal of Computer and System Sciences 49(3), 589–604 (1994)

    Article  MathSciNet  Google Scholar 

  • Gold, E.: Language identification in the limit. Information and Control 10, 447–474 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  • Jain, S., Osherson, D., Royer, J., Sharma, A.: Systems that Learn: An Introduction to Learning Theory, 2nd edn. MIT Press, Cambridge (1999)

    Google Scholar 

  • Kilpeläinen, P., Mannila, H., Ukkonen, E.: MDL learning of unions of simple pattern languages from positive examples. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 252–260. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  • Lange, S., Wiehagen, R.: Polynomial time inference of arbitrary pattern languages. New Generation Computing 8, 361–370 (1991)

    Article  MATH  Google Scholar 

  • Lange, S., Zeugmann, T.: Incremental learning from positive data. Journal of Computer and System Sciences 53, 88–103 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Nix, R.: Editing by examples. Technical Report 280, Department of Computer Science, Yale University, New Haven, CT, USA (1983)

    Google Scholar 

  • Osherson, D., Stob, M., Weinstein, S.: Systems that Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge (1986)

    Google Scholar 

  • Rogers, H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1967) (reprinted, MIT Press, 1987)

    Google Scholar 

  • Shinohara, T., Arikawa, A.: Pattern inference. In: Lange, S., Jantke, K.P. (eds.) Algorithmic Learning for Knowledge-Based Systems. LNCS, vol. 961, pp. 259–291. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  • Salomaa, A.: Patterns (The Formal Language Theory Column). EATCS Bulletin 54, 46–62 (1994)

    Google Scholar 

  • Salomaa, A.: Return to patterns (The Formal Language Theory Column). EATCS Bulletin 55, 144–157 (1994)

    Google Scholar 

  • Shinohara, T.: Inferring unions of two pattern languages. Bulletin of Informatics and Cybernetics 20, 83–88 (1983)

    MathSciNet  MATH  Google Scholar 

  • Shimozono, S., Shinohara, A., Shinohara, T., Miyano, S., Kuhara, S., Arikawa, S.: Knowledge acquisition from amino acid sequences by machine learning system BONSAI. Trans. Information Processing Society of Japan 35, 2009–2018 (1994)

    Google Scholar 

  • Wiehagen, R.: Limes-erkennung rekursiver funktionen durch spezielle strategien. Electronische Informationverarbeitung und Kybernetik 12, 93–99 (1976)

    MathSciNet  MATH  Google Scholar 

  • Winskel, G.: The Formal Semantics of Programming Languages: An Introduction. In: Foundations of Computing Series, MIT Press, Cambridge (1993)

    Google Scholar 

  • Wright, K.: Identification of unions of languages drawn from an identifiable class. In: Rivest, R., Haussler, D., Warmuth, M. (eds.) Proceedings of the Second Annual Workshop on Computational Learning Theory, Santa Cruz, California, pp. 328–333. Morgan Kaufmann, San Francisco (1989)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Case, J., Moelius, S.E. (2007). Parallelism Increases Iterative Learning Power. In: Hutter, M., Servedio, R.A., Takimoto, E. (eds) Algorithmic Learning Theory. ALT 2007. Lecture Notes in Computer Science(), vol 4754. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75225-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75225-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75224-0

  • Online ISBN: 978-3-540-75225-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics