Abstract
In this paper we illustrate an approach for clustering semantically heterogeneous XML Schemas. The proposed approach is driven by the semantics of the involved Schemas that is defined by means of the interschema properties existing among concepts represented therein; interschema properties taken into account by our approach are synonymies (indicating that two concepts have the same meaning), hyponymies (denoting that a concept has a more specific meaning than another one), and overlappings (indicating that two concepts are neither synonyms nor one hyponym of the other, but represent, to some extent, the same reality). An important feature of our approach consists of its capability of being integrated with almost all the clustering algorithms already proposed in the literature. Both a theoretical and an experimental analysis on the complexity of our approach are presented in the paper. They show that our approach is scalable and particularly suited in application contexts characterized by a great number and a large variety of XML Schemas.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beil, F., Ester, M., Xu, X.: Frequent term-based text clustering. In: KDD 2002. Proc. of the International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, pp. 436–442. ACM Press, New York (2002)
Bergamaschi, S., Castano, S., Vincini, M.: Semantic integration of semistructured and structured data sources. SIGMOD Record 28(1), 54–59 (1999)
Castano, S., De Antonellis, V., De Capitani di Vimercati, S.: Global viewing of heterogeneous data sources. IEEE Transactions on Data and Knowledge Engineering 13(2), 277–297 (2001)
Catania, B., Maddalena, A., Vakali, A.: XML document indexes: A classification. IEEE Internet Computing 9(5), 64–71 (2005)
Chung, C., Min, J., Shim, K.: APEX: an adaptive path index for XML data. In: SIGMOD 2002. Proc. of the ACM International Conference on Management of Data, Madison, Wisconsin, USA, pp. 121–132. ACM Press, New York (2002)
Cobena, G., Abiteboul, S., Marian, A.: Detecting changes in XML documents. In: ICDE 2002. Proc. of the IEEE International Conference on Data Engineering, San Jose, California, USA, pp. 41–52. IEEE Computer Society Press, Los Alamitos (2002)
Costa, G., Manco, G., Ortale, R., Tagarelli, A.: A tree-based approach to clustering XML documents by structure. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 137–148. Springer, Heidelberg (2004)
Crescenzi, V., Mecca, G., Merialdo, P.: RoadRunner: Towards automatic data extraction from large Web sites. In: VLDB 2001. Proc. of the International Conference on Very Large Data Bases, pp. 109–118. Morgan Kaufmann, San Francisco (2001)
Dalamagas, T., Cheng, T., Winkel, K., Sellis, T.K.: A methodology for clustering XML documents by structure. Information Systems 31(3), 187–228 (2006)
De Francesca, F., Gordano, G., Ortale, R., Tagarelli, A.: Distance-based clustering of XML documents. In: Proc. of the International Workshop on Mining Graphs, Trees and Sequences (MGTS 2003), pp. 75–78, Cavtat-Dubrovnik, Croatia (2003)
De Meo, P., Quattrone, G., Terracina, G., Ursino, D.: Extraction of synonymies, hyponymies, overlappings and homonymies from XML Schemas at various “severity” levels. In: IDEAS 2004. Proc. of the International Database Engineering and Applications Symposium, Coimbra, Portugal, pp. 389–394. IEEE Computer Society, Los Alamitos (2004)
Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B 30(1), 1–38 (1977)
Deschler, K.W., Rundensteiner, E.A.: MASS: a multi-axis storage structure for large XML documents. In: CIKM 2003. Proc. of ACM International Conference on Information and Knowledge Management, New Orleans, Louisiana, USA, pp. 520–523. ACM Press, New York (2003)
Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: iMAP: Discovering complex semantic matches between database schemas. In: SIGMOD 2004. Proc. of the ACM International Conference on Management of Data, Paris, France, pp. 383–394. ACM Press, New York (2004)
Fankhauser, P., Kracker, M., Neuhold, E.J.: Semantic vs. structural resemblance of classes. ACM SIGMOD RECORD 20(4), 59–63 (1991)
Flesca, S., Manco, G., Masciari, E., Pontieri, L., Pugliese, A.: Fast detection of XML structural similarity. IEEE Transactions on Knowledge Data Engineering 17(2), 160–175 (2005)
Gal, A., Anaby-Tavor, A., Trombetta, A., Montesi, D.: A framework for modeling and evaluating automatic semantic reconciliation. The International Journal on Very Large Databases 14(1), 50–67 (2005)
Galil, Z.: Efficient algorithms for finding maximum matching in graphs. ACM Computing Surveys 18, 23–38 (1986)
Garruzzo, S., Modafferi, S., Rosaci, D., Ursino, D.: X-Compass: an XML agent for supporting user navigation on the Web. In: Andreasen, T., Motro, A., Christiansen, H., Larsen, H.L. (eds.) FQAS 2002. LNCS (LNAI), vol. 2522, pp. 197–211. Springer, Heidelberg (2002)
Guha, S., Rastogi, R., Shim, K.: ROCK: A robust clustering algorithm for categorical attributes. Information Systems 25(5), 345–366 (2000)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2001)
He, B., Tao, T., Chang, K.C.-C.: Organizing structured Web sources by query schemas: a clustering approach. In: CIKM 2004. Proc. of the ACM International Conference on Information and Knowledge Management, Washington, Columbia, USA, pp. 22–31. ACM Press, New York (2004)
Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. International Journal on Digital Libraries 10(2), 180–184 (1985)
Jiang, H., Lu, H., Wang, W., Chin, B.: XR-Tree: Indexing XML Data for Efficient Structural Joins. In: ICDE 2003. Proc. of the International Conference on Data Engineering, Bangalore, India, pp. 253–263. IEEE Computer Society, Los Alamitos (2003)
Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, Heidelberg (2002)
Koutsonikola, V.A., Vakali, A.: LDAP: Framework, practices, and trends. IEEE Internet Computing 8(5), 66–72 (2004)
Lee, M.L., Yang, L.H., Hsu, W., Yang, X.: XClust: clustering XML schemas for effective integration. In: CIKM 2002. Proc. of the ACM International Conference on Information and Knowledge Management, McLean, Virginia, USA, pp. 292–299. ACM Press, New York (2002)
Lian, W., Cheung, D.W., Mamoulis, N., Yiu, S.: An efficient and scalable algorithm for clustering XML documents by structure. IEEE Transactions on Knowledge and Data Engineering 16(1), 82–96 (2004)
Liu, J., Wang, J.T.L., Hsu, W., Herbert, K.G.: XML clustering by principal component analysis. In: ICTAI 2004. Proc. of the IEEE International Conference on Tools with Artificial Intelligence, Boca Raton, Florida, USA, pp. 658–662. IEEE Computer Society, Los Alamitos (2004)
MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proc. of the International Symposium on Mathematics, Statistics and Probability, Berkeley, California, USA, pp. 281–297. University of California Press (1967)
Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with Cupid. In: VLDB 2001. Proc. of the International Conference on Very Large Data Bases, Roma, Italy, pp. 49–58. Morgan Kaufmann, San Francisco (2001)
Miller, A.G.: WordNet: A lexical database for English. Communications of the ACM 38(11), 39–41 (1995)
Nierman, A., Jagadish, H.V.: Evaluating structural similarity in XML documents. In: Proc. of the International Workshop on the Web and Databases (WebDB 2002), pp. 61–66, Madison, Wisconsin, USA (2002)
Palopoli, L., Saccà, D., Terracina, G., Ursino, D.: Uniform techniques for deriving similarities of objects and subschemes in heterogeneous databases. IEEE Transactions on Knowledge and Data Engineering 15(2), 271–294 (2003)
Passi, K., Lane, L., Madria, S.K., Sakamuri, B.C., Mohania, M.K., Bhowmick, S.S.: A model for XML Schema integration. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, pp. 193–202. Springer, Heidelberg (2002)
Qian, W., Zhang, L., Liang, Y., Qian, H., Jin, W.: A two-level method for clustering DTDs. In: Lu, H., Zhou, A. (eds.) WAIM 2000. LNCS, vol. 1846, pp. 41–52. Springer, Heidelberg (2000)
Qian, Y., Zhang, K.: A customizable hybrid approach to data clustering. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 485–489. Springer, Heidelberg (2004)
Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), 334–350 (2001)
Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D., Naughton, J.: Relational databases for querying XML documents: limitations and opportunities. In: VLDB 1999. Proc. of Very Large DataBase Conference, Edinburgh, Scotland, UK, pp. 302–314. Morgan Kaufmann, San Francisco (1999)
Tatarinov, I., Viglas, S.D., Beyer, K., Shanmugasundaram, J., Shekita, E., Zhang, C.: Storing and querying ordered xml using a relational database system. In: SIGMOD 2002. Proc. of the ACM International Conference on Management of Data, Madison, Wisconsin, USA, pp. 204–215. ACM Press, New York (2002)
Terziyan, V., Vitko, O.: Intelligent information management in mobile electronic commerce. Artificial Intelligence News. Journal of Russian Association of Artificial Intelligence 5 (2002)
Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools with Java implementations. Morgan Kaufmann, San Francisco, California, USA (2000)
Xu, L., Jordan, M.I.: On convergence properties of the EM algorithm for gaussian mixtures. Neural Computation 8(1), 129–151 (1996)
Yang, J., Cheung, W.K., Chen, X.: Integrating element and term semantics for similarity-based XML document clustering. In: WI 2005. Proc. of the IEEE/WIC/ACM International Conference on Web Intelligence, Compiegne-Cedex, France, pp. 222–228. IEEE Computer Society Press, Los Alamitos (2005)
Yoon, J.P., Raghavan, V., Chakilam, V.: BitCube: A three-dimensional bitmap indexing for XML documents. In: SSDBM 2001. Proc. of the International Conference on Scientific and Statistical Database Management, Fairfax, Virginia, USA, pp. 158–167. IEEE Computer Society, Los Alamitos (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
De Meo, P., Quattrone, G., Terracina, G., Ursino, D. (2007). Semantics-Guided Clustering of Heterogeneous XML Schemas. In: Spaccapietra, S., et al. Journal on Data Semantics IX. Lecture Notes in Computer Science, vol 4601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74987-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-74987-5_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74982-0
Online ISBN: 978-3-540-74987-5
eBook Packages: Computer ScienceComputer Science (R0)