Field-Based Coordination of Mobile Intelligent Agents: An Evolutionary Game Theoretic Analysis | SpringerLink
Skip to main content

Field-Based Coordination of Mobile Intelligent Agents: An Evolutionary Game Theoretic Analysis

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4692))

Abstract

The paper deals with field-based coordination of agent team in which the continental divide game is applied as a coordination mechanism. The agent team consists of self-interested mobile intelligent agents whose behaviour is modelled using coordination policies based on adaptive learning algorithms. Three types of learning algorithms have been used: three parameter Roth-Erev algorithm, stateless Q-learning algorithm, and experience-weighted attraction algorithm. The coordination policies are analyzed by replicator dynamics from evolutionary game theory. A case study describing performance evaluation of coordination policies according to the analysis is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mamei, M., Zambonelli, F.: Field-Based Coordination for Pervasive Multiagent Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  2. Van Huyck, J.B., Cook, J.P., Battalio, R.C.: Adaptive Behavior and Coordination Failure. Journal of Economic Behavior and Organization 32, 483–503 (1997)

    Article  Google Scholar 

  3. Cooper, R.W.: Coordination Games. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  4. Salmon, T.C.: An Evaluation of Econometric Models of Adaptive Learning. Econometrica 6, 1597–1628 (2001)

    Article  Google Scholar 

  5. Erev, I., Roth, A.E.: Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria. American Economic Review 4, 848–881 (1998)

    Google Scholar 

  6. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  7. Camerer, C., Ho, T.-H.: Experience-Weighted Attraction Learning in Normal Form Games. Econometrica 4, 827–874 (1999)

    Article  Google Scholar 

  8. Weibull, J.W.: Evolutionary Game Theory. MIT Press, Cambridge (1997)

    Google Scholar 

  9. Walsh, W.E., Das, R., Tesauro, G., Kephart, J.O.: Analyzing Complex Strategic Interactions in Multi-Agent Systems. In: Proceeding of the AAAI 2002 Workshop on Game Theoretic and Decision Theoretic Agents, Edmonton, Canada, pp. 109–118 (2002)

    Google Scholar 

  10. Trzec, K., Lovrek, I., Mikac, B.: Agent Behaviour in Double Auction Electronic Market for Communication Resources. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4251, pp. 318–325. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Lovrek, I., Sinkovic, V.: Mobility Management for Personal Agents in the All-Mobile Network. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3213, pp. 1143–1149. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bruno Apolloni Robert J. Howlett Lakhmi Jain

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trzec, K., Lovrek, I. (2007). Field-Based Coordination of Mobile Intelligent Agents: An Evolutionary Game Theoretic Analysis. In: Apolloni, B., Howlett, R.J., Jain, L. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2007. Lecture Notes in Computer Science(), vol 4692. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74819-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74819-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74817-5

  • Online ISBN: 978-3-540-74819-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics