Abstract
Exploratory matrix factorization methods like ICA and LNMF are applied to identify marker genes and classify gene expression data sets into different categories for diagnostic purposes or group genes into functional categories for further investigation of related regulatory pathways. Gene expression levels of either human breast cancer (HBC) cell lines [5] mediating bone metastasis or cell lines from Niemann Pick C patients monitoring monocyte - macrophage differentiation are considered.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baldi, P., Hatfield, W.: DNA Microarrays and Gene Epression. Cambridge University Press, Cambridge (2002)
Cichocki, A., Amari, S.-I.: Adaptive Blind Signal and Image Processing. John Wiley & Sons, Chichester (2002)
Diamantaras, K.I., Kung, S.Y.: Principal Component Neural Networks, Theory and Applications. Wiley, Chichester (1996)
Souloumiac, A., Cardoso, J.-F.: Blind Beamformimg for non-Gaussian signals. IEEE Proc. 140, 362–370 (1993)
Kang, Y., Siegel, P.M., Shu, A., Drobnjak, M., Kakonen, S.M., Cordón, C., Guise, T.A., Massagué, J.: A multigenic program mdeiating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003)
Lee, S.-I., Batzoglou, S.: Application of independent component analysis to microarrays. Genome Biology 4:R76.1–R76.21 (2003)
Zhang, H.J., Cheng, Q., Li, S.Z., Hou, X.W.: Learning spatially localized, parts-based representation. In: Proc. IEEE Conf. Computer Vision and Pattern recognition, Kauai, Hawaii, USA (2001)
Schachtner, R.: Machine Learning Approaches to the Analysis of Microarray Data. Diploma Thesis, University of Regensburg (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schachtner, R., Lutter, D., Theis, F.J., Lang, E.W., Tomé, A.M., Schmitz, G. (2007). Exploiting Blind Matrix Decomposition Techniques to Identify Diagnostic Marker Genes. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-74695-9_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74693-5
Online ISBN: 978-3-540-74695-9
eBook Packages: Computer ScienceComputer Science (R0)