Abstract
A procedure to estimate the parameters of GARCH processes with non-parametric innovations is proposed. We also design an improved technique to estimate the density of heavy-tailed distributions with real support from empirical data. The performance of GARCH processes with non-parametric innovations is evaluated in a series of experiments on the daily log-returns of IBM stocks. These experiments demonstrate the capacity of the improved estimator to yield a precise quantification of market risk.
This work has been supported by Consejería de Educació n de la Comunidad Autónoma de Madrid, European Social Fund, Universidad Autónoma de Madrid and Dirección General de Investigació n under project TIN2004-07676-C02-02.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dowd, K.: Measuring Market Risk. John Wiley & Sons, Chichester (2005)
Campbell, J.Y., Lo, A.W., MacKinlay, A.C.: The Econometrics of Financial Markets. Princeton University Press, Princeton (1997)
Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3), 307–327 (1986)
Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)
Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Journal of Quantitative Finance 1, 223–236 (2001)
Ding, Z., C.W.J.G., Engle, R.F.: A long memory property of stock market returns and a new model. Journal of Empirical Finance 1(1), 83–106 (1993)
Nolan, J.P: Stable Distributions. Birkhäuser, Basel (2002)
Devroye, L., Gyrfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition (Stochastic Modelling and Applied Probability). Springer, Heidelberg (1997)
Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC (1986)
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford, UK (1995)
Wand, M.P., Marron, J.S., Ruppert, D.: Transformations in density estimation. with discussion and a rejoinder by the authors. Journal of the American Statistical Association 86(414), 343–361 (1991)
Barndorff-Nielsen, O.E.: Normal inverse gaussian distributions and stochastic volatility modelling. Scandinavian Journal of Statistics 24(1), 1–13 (1997)
Eberlein, E., Keller, U.: Hyperbolic distributions in finance. Bernoulli 1(3), 281–299 (1995)
Prause, K.: The generalized hyperbolic model: Estimation, financial derivatives and risk measures. PhD Dissertation, University of Freiburg (1999)
Kerkhof, J., Melenberg, B.: Backtesting for risk-based regulatory capital. Journal of Banking & Finance 28(8), 1845–1865 (2004)
R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0 (2005)
Mittnik, S., D.T., D., C.: Computing the probability density function of the stable paretian distribution. Mathematical and Computer Modelling 29(10), 235–240 (1997)
Wuertz, D., Others, M.: fBasics: Financial Software Collection - fBasics (2004)
Longin, F.M.: The asymptotic distribution of extreme stock market returns. The Journal of Business 69(3), 383–408 (1996)
Dennis, W., Jansen, C.G.d.v.: On the frequency of large stock returns: Putting booms and busts into perspective. The Review of Economics and Statistics 73(1), 18–24 (1991)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hernández-Lobato, J.M., Hernández-Lobato, D., Suárez, A. (2007). GARCH Processes with Non-parametric Innovations for Market Risk Estimation. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_74
Download citation
DOI: https://doi.org/10.1007/978-3-540-74695-9_74
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74693-5
Online ISBN: 978-3-540-74695-9
eBook Packages: Computer ScienceComputer Science (R0)