GARCH Processes with Non-parametric Innovations for Market Risk Estimation | SpringerLink
Skip to main content

GARCH Processes with Non-parametric Innovations for Market Risk Estimation

  • Conference paper
Artificial Neural Networks – ICANN 2007 (ICANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4669))

Included in the following conference series:

  • 1967 Accesses

Abstract

A procedure to estimate the parameters of GARCH processes with non-parametric innovations is proposed. We also design an improved technique to estimate the density of heavy-tailed distributions with real support from empirical data. The performance of GARCH processes with non-parametric innovations is evaluated in a series of experiments on the daily log-returns of IBM stocks. These experiments demonstrate the capacity of the improved estimator to yield a precise quantification of market risk.

This work has been supported by Consejería de Educació n de la Comunidad Autónoma de Madrid, European Social Fund, Universidad Autónoma de Madrid and Dirección General de Investigació n under project TIN2004-07676-C02-02.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dowd, K.: Measuring Market Risk. John Wiley & Sons, Chichester (2005)

    Google Scholar 

  2. Campbell, J.Y., Lo, A.W., MacKinlay, A.C.: The Econometrics of Financial Markets. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  3. Bollerslev, T.: Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31(3), 307–327 (1986)

    Article  MATH  Google Scholar 

  4. Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  5. Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Journal of Quantitative Finance 1, 223–236 (2001)

    Google Scholar 

  6. Ding, Z., C.W.J.G., Engle, R.F.: A long memory property of stock market returns and a new model. Journal of Empirical Finance 1(1), 83–106 (1993)

    Article  Google Scholar 

  7. Nolan, J.P: Stable Distributions. Birkhäuser, Basel (2002)

    Google Scholar 

  8. Devroye, L., Gyrfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition (Stochastic Modelling and Applied Probability). Springer, Heidelberg (1997)

    Google Scholar 

  9. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC (1986)

    Google Scholar 

  10. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford, UK (1995)

    Google Scholar 

  11. Wand, M.P., Marron, J.S., Ruppert, D.: Transformations in density estimation. with discussion and a rejoinder by the authors. Journal of the American Statistical Association 86(414), 343–361 (1991)

    Article  MATH  Google Scholar 

  12. Barndorff-Nielsen, O.E.: Normal inverse gaussian distributions and stochastic volatility modelling. Scandinavian Journal of Statistics 24(1), 1–13 (1997)

    Article  MATH  Google Scholar 

  13. Eberlein, E., Keller, U.: Hyperbolic distributions in finance. Bernoulli 1(3), 281–299 (1995)

    Article  MATH  Google Scholar 

  14. Prause, K.: The generalized hyperbolic model: Estimation, financial derivatives and risk measures. PhD Dissertation, University of Freiburg (1999)

    Google Scholar 

  15. Kerkhof, J., Melenberg, B.: Backtesting for risk-based regulatory capital. Journal of Banking & Finance 28(8), 1845–1865 (2004)

    Article  Google Scholar 

  16. R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0 (2005)

    Google Scholar 

  17. Mittnik, S., D.T., D., C.: Computing the probability density function of the stable paretian distribution. Mathematical and Computer Modelling 29(10), 235–240 (1997)

    Article  Google Scholar 

  18. Wuertz, D., Others, M.: fBasics: Financial Software Collection - fBasics (2004)

    Google Scholar 

  19. Longin, F.M.: The asymptotic distribution of extreme stock market returns. The Journal of Business 69(3), 383–408 (1996)

    Article  Google Scholar 

  20. Dennis, W., Jansen, C.G.d.v.: On the frequency of large stock returns: Putting booms and busts into perspective. The Review of Economics and Statistics 73(1), 18–24 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hernández-Lobato, J.M., Hernández-Lobato, D., Suárez, A. (2007). GARCH Processes with Non-parametric Innovations for Market Risk Estimation. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74695-9_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74693-5

  • Online ISBN: 978-3-540-74695-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics