Abstract
Biomedical signals are generally contaminated with artifacts and noise. In case artifacts dominate, the useful signal can easily be extracted with projective subspace techniques. Then, biomedical signals which often represent one dimensional time series, need to be transformed to multi-dimensional signal vectors for the latter techniques to be applicable. In this work we propose the application of a greedy kernel Principal Component Analysis(KPCA) which allows to decompose the multidimensional vectors into components, and we will show that the one related with the largest eigenvalues correspond to an high-amplitude artifact that can be subtracted from the original.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bach, F.R., Jordan, M.I.: Kernel independent component analysis. Journal of Machine Learning Research 3, 1–48 (2002)
Cawley, G.C., Talbot, N.L.C.: Efficient formation of a basis in a kernel induced feature space. In: Verleysen, M. (ed.) European Symposium on Artificial Neural Networks, Bruges, Belgium, pp. 1–6 (2002)
Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods 134, 9–21 (2004)
Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the nyström method. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2), 214–225 (2004)
Franc, V., Hlaváč, V.: Greedy algorithm for a training set reduction in the kernel methods. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 426–433. Springer, Heidelberg (2003)
Golyandina, N., Nekrutkin, V., Zhigljavsky, A.: Analysis of Time Series Structure: SSA and Related Techniques. Chapman & HALL/CRC (2001)
He, P., Wilson, G., Russel, C.: Removal of ocular artifacts from electroencephalogram by adpative filtering. Medical & Biological Engineering & Computing 42, 407–412 (2004)
Joyce, C.A., Gorodniysky, I.F., Kutas, M.: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 41, 313–325 (2004)
Jung, T.-P., Makeig, S., Humphries, C., Lee, T.-W., Mckeown, M.J., Iragui, V., Sejnowski, T.j.: Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37, 163–178 (2000)
Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based algorithms. IEEE Transactions on Neural Networks 12(2), 181–202 (2001)
Teixeira, A.R., Tomé, A.M., Lang, E.W., Stadlthanner, K.: Nonlinear projective techniques to extract artifacts in biomedical signals. In: EUSIPCO2006, Florence, Italy (2006)
Teixeira, A.R., Tomé, A.M., Lang, E.W., Gruber, P., da Silva, A.M.: Automatic removal of high-amplitude artifacts from single-channnel electroencephalograms. Computer Methods and Programs in Biomedicine 83(2), 125–138 (2006)
Urrestarazu, E., Iriarte, J., Alegre, M., Valencia, M., Viteri, C., Artieda, J.: Independent component analysis removing artifacts in ictal recordings. Epilepsia 45(9), 1071–1078 (2004)
Vigário, R.N.: Extraction of ocular artefacts from EEG using independent component analysis. Electroencephalography and Clinical Neurophysiology 103, 395–404 (1997)
Williams, C.K.I., Seeger, M.: Using the nyström method to speed up kernel machines. In: Advances in Neural Information Processing Systems, pp. 682–688. MIT Press, Cambridge (2000)
You, C.H., Koh, S.N., Rahardja, S.: Signal subspace speech enhancement for audible noise reduction. In: ICASPP 2005, Philadelphia, USA, vol. I, pp. 145–148. IEEE, Los Alamitos (2005)
Zhou, W., Gotman, J.: Removing eye-movement artifacts from the EEG during the intracarotid amobarbital procedure. Epilepsia 46(3), 409–414 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Teixeira, A.R., Tomé, A.M., Lang, E.W. (2007). Greedy KPCA in Biomedical Signal Processing. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_50
Download citation
DOI: https://doi.org/10.1007/978-3-540-74695-9_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74693-5
Online ISBN: 978-3-540-74695-9
eBook Packages: Computer ScienceComputer Science (R0)