Spatio-temporal Aggregations in Trajectory Data Warehouses | SpringerLink
Skip to main content

Spatio-temporal Aggregations in Trajectory Data Warehouses

  • Conference paper
Data Warehousing and Knowledge Discovery (DaWaK 2007)

Abstract

In this paper we investigate some issues related to the design of a simple Data Warehouse (DW), storing several aggregate measures about trajectories of moving objects. First we discuss the loading phase of our DW which has to deal with overwhelming streams of trajectory observations, possibly produced at different rates, and arriving in an unpredictable and unbounded way. Then, we focus on the measure presence, the most complex measure stored in our DW. Such a measure returns the number of trajectories that lie in a spatial region during a given temporal interval. We devise a novel way to compute an approximate, but very accurate, presence aggregate function, which algebraically combines a bounded amount of measures stored in the base cells of the data cube.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Braz, F., Orlando, S., Orsini, R., Raffaetà, A., Roncato, A., Silvestri, C.: Approximate Aggregations in Trajectory Data Warehouses. In: STDM Workshop, pp. 536–545 (2007)

    Google Scholar 

  2. Brinkhoff, T.: A Framework for Generating Network-Based Moving Objects. GeoInformatica 6(2), 153–180 (2002)

    Article  MATH  Google Scholar 

  3. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology. SIGMOD Record, 30, 65–74 (1997)

    Google Scholar 

  4. Flajolet, P., Martin, G.: Probabilistic counting algorithms for data base applications. Journal of Computer and System Sciences 31(2), 182–209 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Nearest Neighbor Search on Moving Object Trajectories. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 328–345. Springer, Heidelberg (2005)

    Google Scholar 

  6. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. DMKD 1(1), 29–54 (1997)

    Article  Google Scholar 

  7. Han, J., Chen, Y., Dong, G., Pei, J., Wah, B.W., Wang, J., Cai, Y.D.: Stream Cube: An Architecture for Multi-Dimensional Analysis of Data Streams. Distributed and Parallel Databases 18(2), 173–197 (2005)

    Article  Google Scholar 

  8. Papadias, D., Tao, Y., Kalnis, P., Zhang, J.: Indexing Spatio-Temporal Data Warehouses. In: ICDE 2002, pp. 166–175 (2002)

    Google Scholar 

  9. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel Approaches in Query Processing for Moving Object Trajectories. In: VLDB 2000, pp. 395–406 (2000)

    Google Scholar 

  10. Tao, Y., Kollios, G., Considine, J., Li, F., Papadias, D.: Spatio-Temporal Aggregation Using Sketches. In: ICDE 2004, pp. 214–225 (2004)

    Google Scholar 

  11. Vitter, J.S., Wang, M., Iyer, B.: Data Cube Approximation and Histograms via Wavelets. In: CIKM 1998, pp. 96–104. ACM Press, New York (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Il Yeal Song Johann Eder Tho Manh Nguyen

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Orlando, S., Orsini, R., Raffaetà, A., Roncato, A., Silvestri, C. (2007). Spatio-temporal Aggregations in Trajectory Data Warehouses. In: Song, I.Y., Eder, J., Nguyen, T.M. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2007. Lecture Notes in Computer Science, vol 4654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74553-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74553-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74552-5

  • Online ISBN: 978-3-540-74553-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics