Combining Regularization Frameworks for Solving the Electrocardiography Inverse Problem | SpringerLink
Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2))

Included in the following conference series:

  • 1381 Accesses

Abstract

Regularization is a key step for solving the ill-posed inverse problem of electrocardiography (ECG). In this paper, a novel regularization technique (LSQR-Tik) which combines the least square QR (LSQR) method with a Tikhonov-like prior information term is proposed. This technique needs to select two parameters, the Tikhonov-like regularization parameter (λ) and the iteration number of LSQR-Tik (k), which can be determined by a modified L-curve technique. The performance of the LSQR-Tik method for solving the inverse ECG problem was evaluated based on a realistic heart-torso model simulation protocol. The results show that the LSQR-Tik method could overcome the ill-pose property effectively and get better inverse solutions than those of Tikhonov and LSQR methods, especially in the case of body surface potential with large noises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rudy, Y., Messinger, R.: The Inverse Problem in Electrocardiography: Solutions in Terms of Epicardial Potentials. CRC Crit. Rev. Biomed. Eng. 16, 215–268 (1988)

    Google Scholar 

  2. Seger, M., Fischer, G., Modre, R., Messnarz, B., Hanser, F., Tilg, B.: Lead Field Computation for The Electrocardiographic Inverse Problem-Finite Elements Versus Boundary Elements. Computer Methods and Programs in Biomedicine 77, 241–252 (2005)

    Article  Google Scholar 

  3. Calvetti, D., Reichel, L.: Tikhonov Regularization of Large Linear Problems BIT Numerical Mathematics 43, 263–283 (2003)

    Google Scholar 

  4. Johnston, P.R., Gulrajani, R.M.: Selecting the Corner in the L-Curve Approach to Tikhonov Regularization. IEEE Trans. Biomed. Eng. 47, 1293–1296 (2000)

    Article  Google Scholar 

  5. Hansen, P.C., OLeary, D.P.: The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems. SIAM J. Sci. Comput. 14, 1487–1503 (1993)

    Article  MATH  Google Scholar 

  6. Golub, G.H., Von, M.U.: Generalized Cross-Validation for Large-Scale Problems. J. Comput. Graph. Statist. 6, 1–34 (1997)

    Article  Google Scholar 

  7. Bazan, F.S.V.: CGLS-GCV: A Hybrid Algorithm for Low-Rank-Deficient Problems. Applied Numerical Mathematics 47, 91–108 (2003)

    Article  MATH  Google Scholar 

  8. Jacobsen, M., Hansen, P.C., Saunders, M.A.: Subspace Preconditioned LSQR for Discrete Ill-Posed Problems. BIT Numerical Mathematics 43, 975–989 (2003)

    Article  MATH  Google Scholar 

  9. Angelika, B.G., Valia, G.O.: An Improved Preconditioned LSQR for Discrete Ill-Posed Problems. Mathematics Computers in Simulation 73, 65–75 (2006)

    Article  MATH  Google Scholar 

  10. Jiang, M., Xia, L., Shou, G., Tang, M.: Combination of the LSQR Method and A Genetic Algorithm for Solving The Electrocardiography Inverse Problem. Phys. Med. Biol. 52, 1277–1294 (2007)

    Article  Google Scholar 

  11. Paige, C.C., Saunders, M.A., LSQR,: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Trans. Math. Software 8, 43–71 (1982)

    Article  MATH  Google Scholar 

  12. Youmaran, R., Adler, A.: Combining Regularization Frameworks for Image Deblurring: Optimization of Combined Hyper-Parameters. Canadian Conference on Electrical and Computer Engineering 2, 723–726 (2004)

    Google Scholar 

  13. Xia, L., Huo, M., Wei, Q., Liu, F., Crozier, S.: Analysis of Cardiac Ventricular Wall Motion Based on A Three-Dimensional Electromechanical Biventricular Model. Phys. Med. Biol. 50, 1901–1917 (2005)

    Article  Google Scholar 

  14. Xia, L., Huo, M., Wei, Q., Liu, F., Crozie, S.: Electrodynamic Heart Model Construction and ECG Simulation. Methods of Information in Medicine 45, 564–573 (2006)

    Google Scholar 

  15. Xia, L., Zhang, Y., Zhang, H., Wei, Q., Liu, F., Crozier, S.: Simulation of Brugada Syndrome Using Cellular and Three-Dimensional Whole-Heart Modeling Approaches. Phsiological Measurement 27, 1125–1142 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

De-Shuang Huang Laurent Heutte Marco Loog

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jiang, M., Xia, L., Shou, G. (2007). Combining Regularization Frameworks for Solving the Electrocardiography Inverse Problem. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques. ICIC 2007. Communications in Computer and Information Science, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74282-1_136

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74282-1_136

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74281-4

  • Online ISBN: 978-3-540-74282-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics