The Stackelberg Minimum Spanning Tree Game | SpringerLink
Skip to main content

The Stackelberg Minimum Spanning Tree Game

  • Conference paper
Algorithms and Data Structures (WADS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4619))

Included in the following conference series:

Abstract

We consider a one-round two-player network pricing game, the Stackelberg Minimum Spanning Tree game or StackMST. The game is played on a graph (representing a network), whose edges are colored either red or blue, and where the red edges have a given fixed cost (representing the competitor’s prices). The first player chooses an assignment of prices to the blue edges, and the second player then buys the cheapest possible minimum spanning tree, using any combination of red and blue edges. The goal of the first player is to maximize the total price of purchased blue edges. This game is the minimum spanning tree analog of the well-studied Stackelberg shortest-path game.

We analyze the complexity and approximability of the first player’s best strategy in StackMST. In particular, we prove that the problem is APX-hard even if there are only two different red costs, and give an approximation algorithm whose approximation ratio is at most min {k,3 + 2ln b,1 + ln W}, where k is the number of distinct red costs, b is the number of blue edges, and W is the maximum ratio between red costs. We also give a natural integer linear programming formulation of the problem, and show that the integrality gap of the fractional relaxation asymptotically matches the approximation guarantee of our algorithm.

This work was partially supported by the Actions de Recherche Concertées (ARC) fund of the Communauté française de Belgique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theoret. Comput. Sci. 237(1-2), 123–134 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Altman, E., Boulogne, T., El-Azouzi, R., Jiménez, T., Wynter, L.: A survey on networking games in telecommunications. Computers and Operations Research 33(2), 286–311 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cardinal, J., Labbé, M., Langerman, S., Palop, B.: Pricing of geometric transportation networks. In: CCCG. Proc. Canadian Conference on Computational Geometry, pp. 92–96 (2005)

    Google Scholar 

  4. Cole, R., Dodis, Y., Roughgarden, T.: Pricing network edges for heterogeneous selfish users. In: STOC. Proc. Symp. Theory of Computing, pp. 521–530 (2003)

    Google Scholar 

  5. Dhamdhere, K., Ravi, R., Singh, M.: On two-stage stochastic minimum spanning trees. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 321–334. Springer, Heidelberg (2005)

    Google Scholar 

  6. Eppstein, D.: Setting parameters by example. SIAM Journal on Computing 32(3), 643–653 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fernández-Baca, D., Slutzki, G., Eppstein, D.: Using sparsification for parametric minimum spanning tree problems. Nordic J. Computing 3(4), 352–366 (1996)

    MATH  Google Scholar 

  8. Granot, D., Huberman, G.: Minimum cost spanning tree games. Mathematical Programming 21(1), 1–18 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grigoriev, A., van Hoesel, S., van der Kraaij, A., Uetz, M., Bouhtou, M.: Pricing network edges to cross a river. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp. 140–153. Springer, Heidelberg (2005)

    Google Scholar 

  10. Hartline, J.D., Koltun, V.: Near-optimal pricing in near-linear time. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 422–431. Springer, Heidelberg (2005)

    Google Scholar 

  11. Karlin, A., Kempe, D., Tamir, T.: Beyond VCG: Frugality of truthful mechanisms. In: FOCS 2005. Proc. 46th Annual IEEE Symposium on Foundations of Computer Science, pp. 615–626. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  12. Labbé, M., Marcotte, P., Savard, G.: A bilevel model of taxation and its application to optimal highway pricing. Management Science 44(12), 1608–1622 (1998)

    Article  MATH  Google Scholar 

  13. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. System Sci. 43(3), 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Roch, S., Savard, G., Marcotte, P.: An approximation algorithm for Stackelberg network pricing. Networks 46(1), 57–67 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Roughgarden, T.: Stackelberg scheduling strategies. SIAM Journal on Computing 33(2), 332–350 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Swamy, C.: The effectiveness of Stackelberg strategies and tolls for network congestion games. In: SODA. Proc. Symp. on Discrete Algorithms (to appear)

    Google Scholar 

  17. van Hoesel, S.: An overview of Stackelberg pricing in networks. Research Memoranda 042, Maastricht : METEOR, Maastricht Research School of Economics of Technology and Organization (2006)

    Google Scholar 

  18. von Stackelberg, H.: Marktform und Gleichgewicht (Market and Equilibrium). Verlag von Julius Springer, Vienna (1934)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Norbert Zeh

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cardinal, J. et al. (2007). The Stackelberg Minimum Spanning Tree Game. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73951-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73948-7

  • Online ISBN: 978-3-540-73951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics