Faster Approximation of Distances in Graphs | SpringerLink
Skip to main content

Faster Approximation of Distances in Graphs

  • Conference paper
Algorithms and Data Structures (WADS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4619))

Included in the following conference series:

Abstract

Let G = (V,E) be a weighted undirected graph on n vertices and m edges, and let d G be its shortest path metric. We present two simple deterministic algorithms for approximating all-pairs shortest paths in G. Our first algorithm runs in \(\tilde{O}(n^2)\) time, and for any u,v ∈ V reports distance no greater than 2d G (u,v) + h(u,v). Here, h(u,v) is the largest edge weight on a shortest path between u and v. The previous algorithm, due to Baswana and Kavitha that achieved the same result was randomized. Our second algorithm for the all-pairs shortest path problem uses Boolean matrix multiplications and for any u,v ∈ V reports distance no greater than (1 + ε)d G (u,v) + 2h(u,v). The currently best known algorithm for Boolean matrix multiplication yields an O(n 2.24 + o(1) ε − 3log( − 1)) time bound for this algorithm. The previously best known result of Elkin with a similar multiplicative factor had a much bigger additive error term.

We also consider approximating the diameter and the radius of a graph. For the problem of estimating the radius, we present an almost 3/2-approximation algorithm which runs in \(\tilde{O}(m\sqrt{n}+n^2)\) time. Aingworth, Chekuri, Indyk, and Motwani used a similar approach and obtained analogous results for the diameter approximation problem. Additionally, we show that if the graph has a small separator decomposition a 3/2-approximation of both the diameter and the radius can be obtained more efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In: STOC 2007, ACM (to appear)

    Google Scholar 

  2. Galil, Z., Margalit, O.: All pairs shortest distances for graphs with small integer length edges. Information and Computation 134(2), 103–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Galil, Z., Margalit, O.: All pairs shortest paths for graphs with small integer length edges. JCSS 54(2), 243–254 (1997)

    MATH  MathSciNet  Google Scholar 

  4. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. JCSS 51 (1995)

    Google Scholar 

  5. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetical progressions. Journal of Symbolic Computation 9, 251–280 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Zwick, U.: Exact and approximate distances in graphs - A survey. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM Journal on Computing 28(4), 1167–1181 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cohen, E., Zwick, U.: All-pairs small-stretch paths. Journal of Algorithms 38(2), 335–353 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM Journal on Computing 29(5), 1740–1759 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and all-pairs small stretch paths. In: FOCS 2006, IEEE, pp. 591–602 (2006)

    Google Scholar 

  11. Elkin, M.: Computing almost shortest paths. ACM Transactions on Algorithms 1(2), 283–323 (2005)

    Article  MathSciNet  Google Scholar 

  12. Chan, T.M.: All-pairs shortest paths for unweighted undirected graphs in o(mn) time. In: SODA 2006, ACM, pp. 514–523 (2006)

    Google Scholar 

  13. Boitmanis, K., Freivalds, K., Ledins, P., Opmanis, R.: Fast and simple approximation of the diameter and radius of a graph. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007, pp. 98–108. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. Journal of Graph Algorithms and Applications 3(3) (1999)

    Google Scholar 

  15. Berman, P., Kasiviswanathan, S.P.: Faster approximation of distances in graphs (2007), Available at http://www.cse.psu.edu/~kasivisw/fadig.pdf

  16. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of ACM 52(1), 1–24 (2005)

    Article  MathSciNet  Google Scholar 

  17. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal of Applied Mathematics 36, 177–189 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs. JCSS 55(1), 3–23 (1997)

    MATH  MathSciNet  Google Scholar 

  19. Coppersmith, D.: Rectangular matrix multiplication revisited. Journal of Complexity 13(1), 42–49 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplication and applications. Journal of Complexity 14(2), 257–299 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Cohen, E.: Efficient parallel shortest-paths in digraphs with a separator decomposition. Journal of Algorithms 21(2), 331–357 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Norbert Zeh

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berman, P., Kasiviswanathan, S.P. (2007). Faster Approximation of Distances in Graphs. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73951-7_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73948-7

  • Online ISBN: 978-3-540-73951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics