Computational and Structural Advantages of Circular Boundary Representation | SpringerLink
Skip to main content

Computational and Structural Advantages of Circular Boundary Representation

  • Conference paper
Algorithms and Data Structures (WADS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4619))

Included in the following conference series:

Abstract

Boundary approximation of planar shapes by circular arcs has quantitive and qualitative advantages compared to using straight-line segments. We demonstrate this by way of three basic and frequent computations on shapes – convex hull, decomposition, and medial axis. In particular, we propose a novel medial axis algorithm that beats existing methods in simplicity and practicality, and at the same time guarantees convergence to the medial axis of the original shape.

Supported by the Austrian FWF JRP ’Industrial Geometry’, S9200.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alt, H., Cheong, O., Vigneron, A.: The Voronoi diagram of curved objects. Discrete & Computational Geometry 34, 439–453 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Attali, D., Boissonnat, J.-D., Edelsbrunner, H.: Stability and computation of medial axes – a state-of-the-art report. In: Mller, T., Hamann, B., Russell, B. (eds.) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, Springer Series on Mathematics and Visualization (to appear)

    Google Scholar 

  3. Avis, D., Toussaint, G.T.: An efficient algorithm for decomposing a polygon into star-shaped polygons. Pattern Recognition 13, 395–398 (1981)

    Article  MathSciNet  Google Scholar 

  4. Bhattacharya, B.K., El Gindy, H.: A new linear convex hull algorithm for simple polygons. IEEE Trans. Information Theory IT-30, 85–88 (1984)

    Article  Google Scholar 

  5. Chazal, F., Lieutier, A.: Stability and homotopy of a subset of the medial axis. In: Proc. 9th ACM Symp. Solid Modeling and Applications, pp. 243–248 (2004)

    Google Scholar 

  6. Chazal, F., Soufflet, R.: Stability and finiteness properties of medial axis and skeleton. J. Dynamical and Control Systems 10, 149–170 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chazelle, B.: A theorem on polygon cutting with applications. In: Proc. 23rd IEEE Symp. FOCS, pp. 339–349 (1982)

    Google Scholar 

  8. Chin, F., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon in linear time. In: Staples, J., Katoh, N., Eades, P., Moffat, A. (eds.) ISAAC 1995. LNCS, vol. 1004, pp. 382–391. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  9. Choi, H.I., Choi, S.W., Moon, H.P.: Mathematical theory of medial axis transform. Pacific J. Mathematics 181, 57–88 (1997)

    Article  MathSciNet  Google Scholar 

  10. Dobkin, D.P., Souvaine, D.L.: Computational geometry in a curved world. Algorithmica 5, 421–457 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Emiris, I.Z., Kakargias, A., Pion, S., Teillaud, M., Tsigaridas, E.P.: Towards an open curved kernel. In: Proc. 20th Ann. ACM Symp. Computational Geometry, pp. 438-446 (2004)

    Google Scholar 

  12. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic Press, San Diego (1997)

    MATH  Google Scholar 

  13. Farin, G., Hoschek, J., Kim, M.-S.: Handbook of Computer Aided Geometric Design. Elsevier, Amsterdam (2002)

    MATH  Google Scholar 

  14. Garey, M.R., Johnson, D.S., Preparata, F.P., Tarjan, R.E.: Triangulating a simple polygon. Information Processing Letters 7, 175–179 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  15. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters 1, 132–133 (1972)

    Article  MATH  Google Scholar 

  16. Graham, R.L., Yao, F.F.: Finding the convex hull of a simple polygon. J. Algorithms 4, 324–331 (1984)

    Article  MathSciNet  Google Scholar 

  17. Held, M., Eibl, J.: Biarc approximation of polygons with asymmetric tolerance bands. Computer-Aided Design 37, 357–371 (2005)

    Article  Google Scholar 

  18. Hertel, S., Mehlhorn, K.: Fast triangulation of the plane with respect to simple polygons. Information & Control 64, 52–76 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  19. Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of abstract Voronoi diagrams. Computational Geometry: Theory and Applications 3, 157–184 (1993)

    MATH  MathSciNet  Google Scholar 

  20. Kong, X., Everett, H., Toussaint, G.T.: The Graham scan triangulates simple polygons. Pattern Recognition Letters 11, 713–716 (1990)

    Article  MATH  Google Scholar 

  21. Lee, D.T.: Medial axis transformation of a planar shape. IEEE Trans. Pattern Analysis and Machine Intelligence PAMI-4, 363–369 (1982)

    Article  Google Scholar 

  22. Lee, D.T., Preparata, F.P.: Location of a point in a planar subdivision and its applications. SIAM J. Computing 6, 594–606 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  23. McCallum, D., Avis, D.: A linear algorithm for finding the convex hull of a simple polygon. Information Processing Letters 9, 201–206 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  24. Meek, D.S., Walton, D.J.: Approximation of a planar cubic Bézier spiral by circular arcs. J. Computational and Applied Mathematics 75, 47–56 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Meek, D.S., Walton, D.J.: Spiral arc spline approximation to a planar spiral. J. Computational and Applied Mathematics 107, 21–30 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Melkman, A.: On-line construction of the convex hull of a simple polygon. Information Processing Letters 25, 11–12 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ong, C.J., Wong, Y.S., Loh, H.T., Hong, X.G.: An optimization approach for biarc curve fitting of B-spline curves. Computer-Aided Design 28, 951–959 (1996)

    Article  Google Scholar 

  28. Ramamurthy, R., Farouki, R.T.: Voronoi diagram and medial axis algorithm for planar domains with curved boundaries I. Theoretical foundations. J. Computational and Applied Mathematics 102, 119–141 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Reif, U.: Uniform B-spline approximation in Sobolev spaces. Numerical Algorithms 15, 1–14 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sabin, M.A.: The use of circular arcs to form curves interpolated through empirical data points. Rep. VTO/MS/164, British Aircraft Corporation (1976)

    Google Scholar 

  31. Šír, Z., Feichtinger, R., Jüttler, B.: Approximating curves and their offsets using biarcs and Pythagorean hodograph quintics. Computer-Aided Design 38, 608–618 (2006)

    Article  Google Scholar 

  32. Yang, X.: Efficient circular arc interpolation based on active tolerance control. Computer-Aided Design 34, 1037–1046 (2002)

    Article  Google Scholar 

  33. Yap, C.K.: An O(n logn) algorithm for the Voronoi diagram of a set of simple curve segments. Discrete & Computational Geometry 2, 365–393 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Norbert Zeh

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aichholzer, O., Aurenhammer, F., Hackl, T., Jüttler, B., Oberneder, M., Šír, Z. (2007). Computational and Structural Advantages of Circular Boundary Representation. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73951-7_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73948-7

  • Online ISBN: 978-3-540-73951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics