Abstract
Boundary approximation of planar shapes by circular arcs has quantitive and qualitative advantages compared to using straight-line segments. We demonstrate this by way of three basic and frequent computations on shapes – convex hull, decomposition, and medial axis. In particular, we propose a novel medial axis algorithm that beats existing methods in simplicity and practicality, and at the same time guarantees convergence to the medial axis of the original shape.
Supported by the Austrian FWF JRP ’Industrial Geometry’, S9200.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alt, H., Cheong, O., Vigneron, A.: The Voronoi diagram of curved objects. Discrete & Computational Geometry 34, 439–453 (2005)
Attali, D., Boissonnat, J.-D., Edelsbrunner, H.: Stability and computation of medial axes – a state-of-the-art report. In: Mller, T., Hamann, B., Russell, B. (eds.) Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, Springer Series on Mathematics and Visualization (to appear)
Avis, D., Toussaint, G.T.: An efficient algorithm for decomposing a polygon into star-shaped polygons. Pattern Recognition 13, 395–398 (1981)
Bhattacharya, B.K., El Gindy, H.: A new linear convex hull algorithm for simple polygons. IEEE Trans. Information Theory IT-30, 85–88 (1984)
Chazal, F., Lieutier, A.: Stability and homotopy of a subset of the medial axis. In: Proc. 9th ACM Symp. Solid Modeling and Applications, pp. 243–248 (2004)
Chazal, F., Soufflet, R.: Stability and finiteness properties of medial axis and skeleton. J. Dynamical and Control Systems 10, 149–170 (2004)
Chazelle, B.: A theorem on polygon cutting with applications. In: Proc. 23rd IEEE Symp. FOCS, pp. 339–349 (1982)
Chin, F., Snoeyink, J., Wang, C.A.: Finding the medial axis of a simple polygon in linear time. In: Staples, J., Katoh, N., Eades, P., Moffat, A. (eds.) ISAAC 1995. LNCS, vol. 1004, pp. 382–391. Springer, Heidelberg (1995)
Choi, H.I., Choi, S.W., Moon, H.P.: Mathematical theory of medial axis transform. Pacific J. Mathematics 181, 57–88 (1997)
Dobkin, D.P., Souvaine, D.L.: Computational geometry in a curved world. Algorithmica 5, 421–457 (1990)
Emiris, I.Z., Kakargias, A., Pion, S., Teillaud, M., Tsigaridas, E.P.: Towards an open curved kernel. In: Proc. 20th Ann. ACM Symp. Computational Geometry, pp. 438-446 (2004)
Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic Press, San Diego (1997)
Farin, G., Hoschek, J., Kim, M.-S.: Handbook of Computer Aided Geometric Design. Elsevier, Amsterdam (2002)
Garey, M.R., Johnson, D.S., Preparata, F.P., Tarjan, R.E.: Triangulating a simple polygon. Information Processing Letters 7, 175–179 (1978)
Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters 1, 132–133 (1972)
Graham, R.L., Yao, F.F.: Finding the convex hull of a simple polygon. J. Algorithms 4, 324–331 (1984)
Held, M., Eibl, J.: Biarc approximation of polygons with asymmetric tolerance bands. Computer-Aided Design 37, 357–371 (2005)
Hertel, S., Mehlhorn, K.: Fast triangulation of the plane with respect to simple polygons. Information & Control 64, 52–76 (1985)
Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of abstract Voronoi diagrams. Computational Geometry: Theory and Applications 3, 157–184 (1993)
Kong, X., Everett, H., Toussaint, G.T.: The Graham scan triangulates simple polygons. Pattern Recognition Letters 11, 713–716 (1990)
Lee, D.T.: Medial axis transformation of a planar shape. IEEE Trans. Pattern Analysis and Machine Intelligence PAMI-4, 363–369 (1982)
Lee, D.T., Preparata, F.P.: Location of a point in a planar subdivision and its applications. SIAM J. Computing 6, 594–606 (1977)
McCallum, D., Avis, D.: A linear algorithm for finding the convex hull of a simple polygon. Information Processing Letters 9, 201–206 (1979)
Meek, D.S., Walton, D.J.: Approximation of a planar cubic Bézier spiral by circular arcs. J. Computational and Applied Mathematics 75, 47–56 (1996)
Meek, D.S., Walton, D.J.: Spiral arc spline approximation to a planar spiral. J. Computational and Applied Mathematics 107, 21–30 (1999)
Melkman, A.: On-line construction of the convex hull of a simple polygon. Information Processing Letters 25, 11–12 (1987)
Ong, C.J., Wong, Y.S., Loh, H.T., Hong, X.G.: An optimization approach for biarc curve fitting of B-spline curves. Computer-Aided Design 28, 951–959 (1996)
Ramamurthy, R., Farouki, R.T.: Voronoi diagram and medial axis algorithm for planar domains with curved boundaries I. Theoretical foundations. J. Computational and Applied Mathematics 102, 119–141 (1999)
Reif, U.: Uniform B-spline approximation in Sobolev spaces. Numerical Algorithms 15, 1–14 (1997)
Sabin, M.A.: The use of circular arcs to form curves interpolated through empirical data points. Rep. VTO/MS/164, British Aircraft Corporation (1976)
Šír, Z., Feichtinger, R., Jüttler, B.: Approximating curves and their offsets using biarcs and Pythagorean hodograph quintics. Computer-Aided Design 38, 608–618 (2006)
Yang, X.: Efficient circular arc interpolation based on active tolerance control. Computer-Aided Design 34, 1037–1046 (2002)
Yap, C.K.: An O(n logn) algorithm for the Voronoi diagram of a set of simple curve segments. Discrete & Computational Geometry 2, 365–393 (1987)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aichholzer, O., Aurenhammer, F., Hackl, T., Jüttler, B., Oberneder, M., Šír, Z. (2007). Computational and Structural Advantages of Circular Boundary Representation. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_33
Download citation
DOI: https://doi.org/10.1007/978-3-540-73951-7_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73948-7
Online ISBN: 978-3-540-73951-7
eBook Packages: Computer ScienceComputer Science (R0)