Abstract
We introduce a family of directed geometric graphs, denoted \(G_\lambda^\theta\), that depend on two parameters λ and θ. For \(0\leq \theta<\frac{\pi}{2}\) and \(\frac{1}{2} < \lambda < 1\), the \(G_\lambda^\theta\) graph is a strong t-spanner, with \(t=\frac{1}{(1-\lambda)\cos\theta}\). The out-degree of a node in the \(G_\lambda^\theta\) graph is at most \(\lfloor2\pi/\min(\theta, \arccos\frac{1}{2\lambda})\rfloor\). Moreover, we show that routing can be achieved locally on \(G_\lambda^\theta\). Next, we show that all strong t-spanners are also t-spanners of the unit disk graph. Simulations for various values of the parameters λ and θ indicate that for random point sets, the spanning ratio of \(G_\lambda^\theta\) is better than the proven theoretical bounds.
Research supported in part by NSERC, MITACS, MRI, and HPCVL.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bose, P., Carmi, P., Couture, M., Smid, M., Xu, D.: On a family of strong geometric spanners that admit local routing strategies. Technical Report TR-07-08, School of Computer Science, Carleton University (2007)
Bose, P., Devroye, L., Evans, W., Kirkpatrick, D.: On the spanning ratio of Gabriel graphs and β-skeletons. SIAM Journal of Disc. Math. 20(2), 412–427 (2006)
Bose, P., Maheshwari, A., Narasimhan, G., Smid, M., Zeh, N.: Approximating geometric bottleneck shortest paths. Comput. Geom. Theory Appl. 29(3), 233–249 (2004)
Bose, P., Morin, P.: Online routing in triangulations. SIAM J. Comput. 33(4), 937–951 (2004)
Chavez, E., Dobrev, S., Kranakis, E., Opatrny, J., Stacho, L., Tejeda, H., Urrutia, J.: Half-space proximal: A new local test for extracting a bounded dilation spanner. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds.) OPODIS 2005. LNCS, vol. 3974, Springer, Heidelberg (2006)
Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete euclidean graph. Discrete Comput. Geom. 7(1), 13–28 (1992)
Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, New York (2007)
Yao, A.C.-C.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM J. Comput. 11(4), 721–736 (1982)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bose, P., Carmi, P., Couture, M., Smid, M., Xu, D. (2007). On a Family of Strong Geometric Spanners That Admit Local Routing Strategies. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-540-73951-7_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73948-7
Online ISBN: 978-3-540-73951-7
eBook Packages: Computer ScienceComputer Science (R0)