Abstract
In this paper we analyze several approaches to the Maximum Independent Set problem in hypergraphs with degree bounded by Δ. We propose a general technique that reduces the worst case analysis of certain algorithms to their performance in the case of ordinary graphs. This technique allows us to show that the greedy algorithm that corresponds to the classical greedy set cover algorithm has a performance ratio of (Δ + 1)/2. It also allows us to apply results on local search algorithms of graphs to obtain a (Δ + 1)/2 approximation for a weighted case and (Δ + 3)/5 − ε approximation for an unweighted case. We improve the bound in the weighted case to ⌈(Δ + 1)/3 ⌉ using a simple partitioning algorithm. Finally, we show that another natural greedy algorihthm, that adds vertices of minimum degree, achieves only a ratio of Δ− 1, significantly worse than on ordinary graphs.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bazgan, C., Monnot, J., Paschos, V., Serrière, F.: On the differential approximation of MIN SET COVER. Theor. Comput. Sci. 332, 497–513 (2005)
Berman, P.: A d/2 approximation for Maximum Weight Independent Set in d-claw free graphs. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 214–219. Springer, Heidelberg (2000)
Berman, P., Fujito, T.: On Approximation Properties of the Independent Set Problem for Low Degree Graphs. Theory Comput. Syst. 32(2), 115–132 (1999)
Berman, P., Fürer, M.: Approximating maximum independent set in bounded degree graphs. SODA, pp. 365–371 (1994)
Cardinal, J., Fiorini, S., Joret, G.: Tight Results on Minimum Entropy Set Cover. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, Springer, Heidelberg (2006)
Caro, Y., Tuza, Z.: Improved lower bounds on k-independence. J. of Graph Theory 15, 99–107 (1991)
Chvátal, V.: A greedy heuristic for the set-covering problem. Math. of Operat. Research. 3, 233–235 (1979)
Edmonds, J.: Paths, trees and flowers. Canadian J. of Math. 17, 449–467 (1965)
Feige, U.: A threshold of ln n for approximating set cover. J. of the ACM 45, 634–652 (1998)
Feige, U., Lovász, L., Tetali, P.: Approximating min-sum set cover. Algorithmica 40(4), 219–234 (2004)
Halldórsson, M.: Approximations of independent sets in graphs. In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, Springer, Heidelberg (1998)
Halldórsson, M.M., Lau, H.-C.: Low-degree graph partitioning via local search with applications to Constraint Satisfaction, Max Cut, and 3-Coloring. J. of Graph Alg. and Appl. 1(3), 1–13 (1997)
Halldórsson, M., Radhakrishnan, J.: Greed is good: Approximating independent sets in sparse and bounded-degree graphs. Algorithmica 18, 143–163 (1997)
Halperin, E.: Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. SODA (2000)
Hofmeister, T., Lefmann, H.: Approximating maximum independent sets in uniform hypergraphs. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 562–570. Springer, Heidelberg (1998)
Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Disc.Math. 2(1), 68–72 (1989)
Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256–278 (1974)
Krivelevich, M., Nathaniel, R., Sudakov, B.: Approximating coloring and maximum independent set in 3-uniform hypergraphs. J. of Algorithms 41, 99–113 (2001)
Lovász, L.: On decomposition of graphs. Stud. Sci. Math. Hung. 1, 237–238 (1966)
Lovász, L.: On the ratio of optimal integral and fractional covers. Disc. Math. 13, 383–390 (1975)
Sakai, S., Togasaki, M., Yamazaki, K.: A note on greedy algorithms for the maximum weighted independent set problem. Disc. Appl. Math. 126(2), 313–322 (2003)
Thiele, T.: A lower bound on the independence number of arbitrary hypergraphs. J. of Graph Theory 32, 241–249 (1999)
Trevisan, L.: Non-approximability results for optimization problems on bounded degree instances. In: Proc. of the 33rd ACM STOC (2001)
Vishwanathan, S.: Private communication (1998)
Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2, 385–393 (1982)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Halldórsson, M.M., Losievskaja, E. (2007). Independent Sets in Bounded-Degree Hypergraphs. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-73951-7_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73948-7
Online ISBN: 978-3-540-73951-7
eBook Packages: Computer ScienceComputer Science (R0)