Abstract
This paper discusses optimization of quality measures over first order Delaunay triangulations. Unlike most previous work, our measures relate to edge-adjacent or vertex-adjacent triangles instead of only to single triangles. We give efficient algorithms to optimize certain measures, whereas other measures are shown to be NP-hard. For two of the NP-hard maximization problems we provide for any constant ε> 0, factor (1 − ε) approximation algorithms that run in 2O(1/ε)·n and \(2^{O(1/\varepsilon^2)}\cdot n\) time (when the Delaunay triangulation is given). For a third NP-hard problem the NP-hardness proof provides an inapproximability result. Our results are presented for the class of first-order Delaunay triangulations, but also apply to triangulations where every triangle has at most one flippable edge. One of the approximation results is also extended to k-th order Delaunay triangulations.
This research has been partially funded by the Netherlands Organisation for Scientific Research (NWO) under FOCUS/BRICKS grant number 642.065.503 (GADGET) and under the project GOGO.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aspvall, B., Plass, M., Tarjan, R.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Proc. Lett. 8, 121–123 (1979)
Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 153–180 (1994)
Bern, M., Edelsbrunner, H., Eppstein, D., Mitchell, S., Tan, T.S.: Edge insertion for optimal triangulations. Discrete Comput. Geom. 10(1), 47–65 (1993)
Bern, M., Plassmann, P.: Mesh generation. In: Sack, J., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 291–332. Elsevier, Amsterdam (1997)
Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209, 1–45 (1998)
de Floriani, L., Magillo, P., Puppo, E.: Applications of computational geometry in Geographic Information Systems. In: Sack, J., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 333–388. Elsevier, Amsterdam (1997)
de Kok, T., van Kreveld, M., Löffler, M.: Generating realistic terrains with higher-order Delaunay triangulations. Comput. Geom. Th. Appl. 36, 52–65 (2007)
Edelsbrunner, H., Tan, T.S.: A quadratic time algorithm for the minmax length triangulation. SIAM J. Comput. 22, 527–551 (1993)
Edelsbrunner, H., Tan, T.S., Waupotitsch, R.: O(N 2 logN) time algorithm for the minmax angle triangulation. SIAM J. Sci. Stat. Comput. 13, 994–1008 (1992)
Gudmundsson, J., Hammar, M., van Kreveld, M.: Higher order Delaunay triangulations. Comput. Geom. Theory Appl. 23, 85–98 (2002)
Guibas, L.J., Hershberger, J.E., Mitchell, J.S.B., Snoeyink, J.S.: Approximating polygons and subdivisions with minimum link paths. Internat. J. Comput. Geom. Appl. 3(4), 383–415 (1993)
Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32, 130–136 (1985)
Huggett, R.J.: Fundamentals of Geomorphology. Routledge, London (2003)
Jenson, S.K., Trautwein, C.M.: Methods and applications in surface depression analysis. In: Proc. Auto-Carto, vol. 8, pp. 137–144 (1987)
Kant, G., Bodlaender, H.L.: Triangulating planar graphs while minimizing the maximum degree. Inform. Comput. 135, 1–14 (1997)
Lichtenstein, D.: Planar formulae and their uses. SIAM J. Cmp. 11, 329–343 (1982)
Maidment, D.R.: GIS and hydrologic modeling. In: Goodchild, M., Parks, B., Steyaert, L. (eds.) Environmental modeling with GIS, pp. 147–167. Oxford University Press, New York (1993)
Mulzer, W., Rote, G.: Minimum weight triangulation is NP-hard. In: Proc. 22nd Annu. ACM Sympos. Comput. Geom., pp. 1–10 (2006)
Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, New York (2006)
Robertson, N., Seymour, P.D.: Graph minors II. Algorithmic aspects of tree width. J. Algorithms 7, 309–322 (1986)
Theobald, D.M., Goodchild, M.F.: Artifacts of TIN-based surface flow modelling. In: Proc. GIS/LIS, pp. 955–964 (1990)
van Kreveld, M.: Geographic Information Systems. In: Goodmann, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, ch. 58, pp. 1293–1314. Chapman & Hall/CRC, Boca Raton (2004)
van Kreveld, M., Löffler, M., Silveira, R.I.: Optimization for first order Delaunay triangulations. Technical Report UU-CS-2007-011, Utrecht University, Institute of Information and Computing Sciences (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
van Kreveld, M., Löffler, M., Silveira, R.I. (2007). Optimization for First Order Delaunay Triangulations. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-540-73951-7_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73948-7
Online ISBN: 978-3-540-73951-7
eBook Packages: Computer ScienceComputer Science (R0)