Optimization for First Order Delaunay Triangulations | SpringerLink
Skip to main content

Optimization for First Order Delaunay Triangulations

  • Conference paper
Algorithms and Data Structures (WADS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4619))

Included in the following conference series:

Abstract

This paper discusses optimization of quality measures over first order Delaunay triangulations. Unlike most previous work, our measures relate to edge-adjacent or vertex-adjacent triangles instead of only to single triangles. We give efficient algorithms to optimize certain measures, whereas other measures are shown to be NP-hard. For two of the NP-hard maximization problems we provide for any constant ε> 0, factor (1 − ε) approximation algorithms that run in 2O(1/ε)·n and \(2^{O(1/\varepsilon^2)}\cdot n\) time (when the Delaunay triangulation is given). For a third NP-hard problem the NP-hardness proof provides an inapproximability result. Our results are presented for the class of first-order Delaunay triangulations, but also apply to triangulations where every triangle has at most one flippable edge. One of the approximation results is also extended to k-th order Delaunay triangulations.

This research has been partially funded by the Netherlands Organisation for Scientific Research (NWO) under FOCUS/BRICKS grant number 642.065.503 (GADGET) and under the project GOGO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aspvall, B., Plass, M., Tarjan, R.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Proc. Lett. 8, 121–123 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 153–180 (1994)

    Article  MATH  Google Scholar 

  3. Bern, M., Edelsbrunner, H., Eppstein, D., Mitchell, S., Tan, T.S.: Edge insertion for optimal triangulations. Discrete Comput. Geom. 10(1), 47–65 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bern, M., Plassmann, P.: Mesh generation. In: Sack, J., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 291–332. Elsevier, Amsterdam (1997)

    Google Scholar 

  5. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209, 1–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. de Floriani, L., Magillo, P., Puppo, E.: Applications of computational geometry in Geographic Information Systems. In: Sack, J., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 333–388. Elsevier, Amsterdam (1997)

    Google Scholar 

  7. de Kok, T., van Kreveld, M., Löffler, M.: Generating realistic terrains with higher-order Delaunay triangulations. Comput. Geom. Th. Appl. 36, 52–65 (2007)

    MATH  Google Scholar 

  8. Edelsbrunner, H., Tan, T.S.: A quadratic time algorithm for the minmax length triangulation. SIAM J. Comput. 22, 527–551 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Edelsbrunner, H., Tan, T.S., Waupotitsch, R.: O(N 2 logN) time algorithm for the minmax angle triangulation. SIAM J. Sci. Stat. Comput. 13, 994–1008 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gudmundsson, J., Hammar, M., van Kreveld, M.: Higher order Delaunay triangulations. Comput. Geom. Theory Appl. 23, 85–98 (2002)

    MATH  Google Scholar 

  11. Guibas, L.J., Hershberger, J.E., Mitchell, J.S.B., Snoeyink, J.S.: Approximating polygons and subdivisions with minimum link paths. Internat. J. Comput. Geom. Appl. 3(4), 383–415 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32, 130–136 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Huggett, R.J.: Fundamentals of Geomorphology. Routledge, London (2003)

    Google Scholar 

  14. Jenson, S.K., Trautwein, C.M.: Methods and applications in surface depression analysis. In: Proc. Auto-Carto, vol. 8, pp. 137–144 (1987)

    Google Scholar 

  15. Kant, G., Bodlaender, H.L.: Triangulating planar graphs while minimizing the maximum degree. Inform. Comput. 135, 1–14 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Cmp. 11, 329–343 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Maidment, D.R.: GIS and hydrologic modeling. In: Goodchild, M., Parks, B., Steyaert, L. (eds.) Environmental modeling with GIS, pp. 147–167. Oxford University Press, New York (1993)

    Google Scholar 

  18. Mulzer, W., Rote, G.: Minimum weight triangulation is NP-hard. In: Proc. 22nd Annu. ACM Sympos. Comput. Geom., pp. 1–10 (2006)

    Google Scholar 

  19. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, New York (2006)

    MATH  Google Scholar 

  20. Robertson, N., Seymour, P.D.: Graph minors II. Algorithmic aspects of tree width. J. Algorithms 7, 309–322 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Theobald, D.M., Goodchild, M.F.: Artifacts of TIN-based surface flow modelling. In: Proc. GIS/LIS, pp. 955–964 (1990)

    Google Scholar 

  22. van Kreveld, M.: Geographic Information Systems. In: Goodmann, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, ch. 58, pp. 1293–1314. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

  23. van Kreveld, M., Löffler, M., Silveira, R.I.: Optimization for first order Delaunay triangulations. Technical Report UU-CS-2007-011, Utrecht University, Institute of Information and Computing Sciences (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Norbert Zeh

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Kreveld, M., Löffler, M., Silveira, R.I. (2007). Optimization for First Order Delaunay Triangulations. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73951-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73948-7

  • Online ISBN: 978-3-540-73951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics