Higher Dimensional Trees, Algebraically | SpringerLink
Skip to main content

Higher Dimensional Trees, Algebraically

  • Conference paper
Algebra and Coalgebra in Computer Science (CALCO 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4624))

Included in the following conference series:

  • 476 Accesses

Abstract

In formal language theory, James Rogers published a series of innovative papers generalising strings and trees to higher dimensions. Motivated by applications in linguistics, his goal was to smoothly extend the core theory of the formal languages of strings and trees to higher dimensions.

Rogers’ definitions rely on a specific representation of higher dimensional trees. This paper presents an alternative approach which focusses more on their universal properties and is based upon category theory, algebras, coalgebras and containers. Our approach reveals that Rogers’ trees are canonical constructions which are also particularly beautiful. We also provide new theoretical results concerning higher dimensional trees. Finally, we provide evidence for our devout conviction that clean mathematical theories provide the basis for clean implementations by indicating how our abstract presentation will make computing with higher dimensional trees easier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adámek, J., Trnková, V.: Automata and Algebras in Categories. Kluwer Academic Publishers, Dordrecht (1990)

    MATH  Google Scholar 

  2. Arbib, M.A., Manes, E.G.: Machines in a category: An expository introduction. SIAM Review 16 (1974)

    Google Scholar 

  3. Arbib, M.A., Manes, E.G.: Adjoint machines, state-behaviour machines, and duality. Journ. of Pure and Applied Algebra 6 (1975)

    Google Scholar 

  4. Arbib, M.A., Manes, E.G.: Fuzzy machines in a category. Bull. Austral. Math. Soc. 13 (1975)

    Google Scholar 

  5. Barr, M.: Relational algebras. LNM 137 (1970)

    Google Scholar 

  6. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (1997), Available online.

    Google Scholar 

  7. de Moor, O.: Inductive data types for predicate transformers. Information Processing Letters 43(3), 113–118 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ghani, N., Abbott, M., Altenkirch, T.: Containers - constructing strictly positive types. Theoretical Computer Science 341(1), 3–27 (2005)

    MathSciNet  Google Scholar 

  9. Ghani, N., Lüth, C., de Marchi, F, Power, J.: Dualizing initial algebras. Mathematical Structures in Computer Science 13(1), 349–370 (2003)

    Article  MATH  Google Scholar 

  10. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace theory. In: International Workshop on Coalgebraic Methods in Computer Science (CMCS 2006). Elect. Notes in Theor. Comp. Sci. vol. 164, pp. 47–65. Elsevier, Amsterdam (2006)

    Google Scholar 

  11. Rogers, J.: Syntactic structures as multi-dimensional trees. Research on Language and Computation 1(3-4), 265–305 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Till Mossakowski Ugo Montanari Magne Haveraaen

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghani, N., Kurz, A. (2007). Higher Dimensional Trees, Algebraically. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds) Algebra and Coalgebra in Computer Science. CALCO 2007. Lecture Notes in Computer Science, vol 4624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73859-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73859-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73857-2

  • Online ISBN: 978-3-540-73859-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics