Multi-attribute Text Classification Using the Fuzzy Borda Method and Semantic Grades | SpringerLink
Skip to main content

Multi-attribute Text Classification Using the Fuzzy Borda Method and Semantic Grades

  • Conference paper
Applications of Fuzzy Sets Theory (WILF 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4578))

Included in the following conference series:

Abstract

We consider the problem of automatic classification of text documents, in particular, scientific abstracts and use two types of classifiers: ordinal and numerical. For the first type we use a fuzzy extension of the Borda voting method while for the second type we use a fuzzy Borda method in combination with the semantic grading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alcaide, D.: Ranking of ecological risks related to wastewater management. In: Zaidi, M.K. (ed.) Wastewater Reuse - Risk Assessment, Decision-Making and Environmental Security. Proceedings of the NATO Advanced Research Workshop, Istanbul, Turkey, 12-16 (October 2006). NATO Science for Peace and Security Series, Springer, Heidelberg (2007)

    Google Scholar 

  2. Alexandrov, M., Gelbukh, A., Makagonov, P.: Some keyword-based characteristics for evaluation of thematic structure of multidisciplinary documents. In: Proc. of Intern. Conf. CICLing 2000 (2000)

    Google Scholar 

  3. Alexandrov, M., Gelbukh, A., Rosso, P.: An approach to clustering abstracts. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 275–285. Springer, Heidelberg (2005)

    Google Scholar 

  4. Cortes, C., Vapnik, V.: Support vector networks. Machine learning 20, 273–297 (1995)

    MATH  Google Scholar 

  5. Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., Slattery, S.: Learning to extract symbolic knowledge from the World Wide Web. In: Proceedings of the Fifteenth National Conference on Artificial Intellligence (AAAI-98), pp. 509–516 (1994)

    Google Scholar 

  6. Garcia-Lapresta, J.L., Martinez-Panero, M.: A fuzzy Borda count in multi-person decisin making. In: Trzaskalik, T., Michnik, J. (eds.) Multiple objective and goal programming: Recent Developments, Springer, Heidelberg (2002)

    Google Scholar 

  7. Han, E.S., Karypis, G., Kumar, V.: Text categorization using weight adjusted k-nearest neighbour classification. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 53–65. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Lang, K.: Newsweeder: Learning to filter netnews. In: Machine Learning: Proceedings of the Twelfth International Conference (ICML 1995), pp. 331–339 (1995)

    Google Scholar 

  9. Levis, D., Ringuette, M.: A comparison of two learning algorithms for text classification.In: the 3rd Symposium on Document Analysis and Information Retrieval, pp. 81–93 (1994)

    Google Scholar 

  10. Levner, E., Alcaide, D., Benayahu, Y.: Environmental risk ranking: Theory and applications for emergency planning. Scientific Israel - Technological Advantages 8(1-2), 11–21 (2006)

    Google Scholar 

  11. Mahdavi, I., Sharma, R.R.K., Amiri, Z.R.: Formulation for web document classification: transforming the quadratic problem into 0-1 integer linear. International Journal of Digital Management 1 (1), 63–70 (2006)

    Google Scholar 

  12. Makagonov, P., Alexandrov, M., Gelbukh, A.: Selection of typical documents in a document flow. In: Mastorakis, N., Kluev, V.(eds.) Advances in Communications and Software Technologies, pp. 197–202, WSEAS Press (2002) ISBN 960-8052-71-8

    Google Scholar 

  13. Mamdani, E.H.: Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers C-26(12), 1182–1191 (1977)

    Article  Google Scholar 

  14. MATLAB 2005, Fuzzy logic toolbox user’s guide The MathWorks, Inc (2005)

    Google Scholar 

  15. Pazzani, M.J., Muramatsu, J., Billsus, D.: Syskill and Webert: Identifying interesting Web sites. In: Proceedings of the 13 National Conference on Artificial Intelligence, pp. 54–56 (1996)

    Google Scholar 

  16. Stein, B., Meyer zu Eissen, S.: Automatic document categorization: interpreting the performance of clustering algorithms. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 254–266. Springer, Heidelberg (2003)

    Google Scholar 

  17. Stein, B., Niggemann, O.: On the nature of structure and its identification. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 122–134. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Yang, Y., Pedersen, J.P.: Feature selection in statistical learning of text categorization. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 412–420 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Masulli Sushmita Mitra Gabriella Pasi

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Levner, E., Alcaide, D., Sicilia, J. (2007). Multi-attribute Text Classification Using the Fuzzy Borda Method and Semantic Grades. In: Masulli, F., Mitra, S., Pasi, G. (eds) Applications of Fuzzy Sets Theory. WILF 2007. Lecture Notes in Computer Science(), vol 4578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73400-0_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73400-0_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73399-7

  • Online ISBN: 978-3-540-73400-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics