Fuzzy Rules Generation Method for Pattern Recognition Problems | SpringerLink
Skip to main content

Fuzzy Rules Generation Method for Pattern Recognition Problems

  • Conference paper
Applications of Fuzzy Sets Theory (WILF 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4578))

Included in the following conference series:

Abstract

In the paper we consider the problem of automatic fuzzy rules mining. A new method for generation of fuzzy rules according to the set of precedents is suggested. The proposed algorithm can find all significant rules with respect to wide range of reasonable criterion functions. We present the statistical criterion for knowledge quality estimation that provides high generalization ability. The theoretical results are complemented with the experimental evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees (1984)

    Google Scholar 

  2. Breslow, L.A., Aha, D.W.: Simplifying decision trees: a survey. Knowledge Engineering Review 12(1), 1–40 (1997)

    Article  Google Scholar 

  3. Cohen, W.W., Singer, Y.: A Simple, Fast and Effective Rule Learner.In: Proc. 16th Nat. Conf. Artif. Intell (1999)

    Google Scholar 

  4. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proc. 13th Intern. Conf. Mach. Learn, pp.148–156 (1996)

    Google Scholar 

  5. Gomez-Scarmeta, A.F., Jimenez, F.: Generating and Tuning Fuzzy Rules Using Hybrid Systems.In: Proc. 6th IEEE Intern. Conf. Fuzzy Syst., vol. 1, pp. 247–252 (1997)

    Google Scholar 

  6. Inoue, H., Kamei, K., Inoue, K.: Rule Pairing Methods for Crossover in GA for Automatic Generation of Fuzzy Control Rules (1998), http://citeseer.ist.psu.edu/200265.html

  7. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Construction of Fuzzy Classification Systems with Rectangular Fuzzy Rules Using Genetic Algorithms. Fuzzy Sets and Systems 65(2/3), 237–253 (1994)

    Article  MathSciNet  Google Scholar 

  8. Jang, J.-S.R.: ANFIS: Adaptive-Network-based Fuzzy Inference Systems. IEEE Trans. on Syst. Man and Cyber. 23(3), 665–685 (1993)

    Article  MathSciNet  Google Scholar 

  9. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice-Hall, Englewood Cliffs (1997)

    Google Scholar 

  10. Ojala, T.: Neuro-Fuzzy Systems in Control. MSc thesis, Tampere, Finland (1994)

    Google Scholar 

  11. Perfilieva, I.: Applications of fuzzy sets theory. In: Itogi nauki i techniki, vol. 29, pp. 83–151 (1990)

    Google Scholar 

  12. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  13. Rivest, R.L.: Learning Decision Lists. Machine Learning 2(3), 229–246 (1987)

    Google Scholar 

  14. Ryazanov, V.V., Obukhov, A.S.: On using of relaxation algorithm for optimization of linear decision rules.In: Proc. 10th Conf. Math. Methods Pattern Recogn. (2001)

    Google Scholar 

  15. Terano, T., Asai, K., Sugeno, M.: Applied Fuzzy Systems (1993)

    Google Scholar 

  16. Vapnik, V.N.: Statistical Learning Theory. Wiley, Chichester, UK (1998)

    MATH  Google Scholar 

  17. Vorontsov, K.V.: Lectures on logical classification algorithms (2006), http://www.ccas.ru/voron/download/LogiclAlgs.pdf

  18. Zadeh, L.: The Concept of a linguistic variable and its application to approximate reasoning. Elsevier Pub. Co., Amsterdam (1973)

    Google Scholar 

  19. Zhuravlev, Y.I.: Selected Scientific Works. Magistr. (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Masulli Sushmita Mitra Gabriella Pasi

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kropotov, D., Vetrov, D. (2007). Fuzzy Rules Generation Method for Pattern Recognition Problems. In: Masulli, F., Mitra, S., Pasi, G. (eds) Applications of Fuzzy Sets Theory. WILF 2007. Lecture Notes in Computer Science(), vol 4578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73400-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73400-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73399-7

  • Online ISBN: 978-3-540-73400-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics