Abstract
In the paper we consider the problem of automatic fuzzy rules mining. A new method for generation of fuzzy rules according to the set of precedents is suggested. The proposed algorithm can find all significant rules with respect to wide range of reasonable criterion functions. We present the statistical criterion for knowledge quality estimation that provides high generalization ability. The theoretical results are complemented with the experimental evaluation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees (1984)
Breslow, L.A., Aha, D.W.: Simplifying decision trees: a survey. Knowledge Engineering Review 12(1), 1–40 (1997)
Cohen, W.W., Singer, Y.: A Simple, Fast and Effective Rule Learner.In: Proc. 16th Nat. Conf. Artif. Intell (1999)
Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proc. 13th Intern. Conf. Mach. Learn, pp.148–156 (1996)
Gomez-Scarmeta, A.F., Jimenez, F.: Generating and Tuning Fuzzy Rules Using Hybrid Systems.In: Proc. 6th IEEE Intern. Conf. Fuzzy Syst., vol. 1, pp. 247–252 (1997)
Inoue, H., Kamei, K., Inoue, K.: Rule Pairing Methods for Crossover in GA for Automatic Generation of Fuzzy Control Rules (1998), http://citeseer.ist.psu.edu/200265.html
Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Construction of Fuzzy Classification Systems with Rectangular Fuzzy Rules Using Genetic Algorithms. Fuzzy Sets and Systems 65(2/3), 237–253 (1994)
Jang, J.-S.R.: ANFIS: Adaptive-Network-based Fuzzy Inference Systems. IEEE Trans. on Syst. Man and Cyber. 23(3), 665–685 (1993)
Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice-Hall, Englewood Cliffs (1997)
Ojala, T.: Neuro-Fuzzy Systems in Control. MSc thesis, Tampere, Finland (1994)
Perfilieva, I.: Applications of fuzzy sets theory. In: Itogi nauki i techniki, vol. 29, pp. 83–151 (1990)
Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco (1993)
Rivest, R.L.: Learning Decision Lists. Machine Learning 2(3), 229–246 (1987)
Ryazanov, V.V., Obukhov, A.S.: On using of relaxation algorithm for optimization of linear decision rules.In: Proc. 10th Conf. Math. Methods Pattern Recogn. (2001)
Terano, T., Asai, K., Sugeno, M.: Applied Fuzzy Systems (1993)
Vapnik, V.N.: Statistical Learning Theory. Wiley, Chichester, UK (1998)
Vorontsov, K.V.: Lectures on logical classification algorithms (2006), http://www.ccas.ru/voron/download/LogiclAlgs.pdf
Zadeh, L.: The Concept of a linguistic variable and its application to approximate reasoning. Elsevier Pub. Co., Amsterdam (1973)
Zhuravlev, Y.I.: Selected Scientific Works. Magistr. (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kropotov, D., Vetrov, D. (2007). Fuzzy Rules Generation Method for Pattern Recognition Problems. In: Masulli, F., Mitra, S., Pasi, G. (eds) Applications of Fuzzy Sets Theory. WILF 2007. Lecture Notes in Computer Science(), vol 4578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73400-0_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-73400-0_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73399-7
Online ISBN: 978-3-540-73400-0
eBook Packages: Computer ScienceComputer Science (R0)