Fully Automated Registration of First-Pass Myocardial Perfusion MRI Using Independent Component Analysis | SpringerLink
Skip to main content

Fully Automated Registration of First-Pass Myocardial Perfusion MRI Using Independent Component Analysis

  • Conference paper
Information Processing in Medical Imaging (IPMI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4584))

Abstract

This paper presents a novel method for registration of cardiac perfusion MRI. The presented method successfully corrects for breathing motion without any manual interaction using Independent Component Analysis to extract physiologically relevant features together with their time-intensity behavior. A time-varying reference image mimicking intensity changes in the data of interest is computed based on the results of ICA, and used to compute the displacement caused by breathing for each frame. Qualitative and quantitative validation of the method is carried out using 46 clinical quality, short-axis, perfusion MR datasets comprising 100 images each. Validation experiments showed a reduction of the average LV motion from 1.26±0.87 to 0.64±0.46 pixels. Time-intensity curves are also improved after registration with an average error reduced from 2.65±7.89% to 0.87±3.88% between registered data and manual gold standard. We conclude that this fully automatic ICA-based method shows an excellent accuracy, robustness and computation speed, adequate for use in a clinical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • McNamara, M.T., Higgins, C.B., Ehman, R.L., Revel, D., Sievers, R., Brasch, R.C.: Acute myocardial ischemia: Magnetic resonance contrast enhancement with Gadolinium-DTPA. Radiology 153, 157–163 (1984)

    Google Scholar 

  • Wilke, N.M., Jerosch-Herold, M., Zenovich, A., Stillman, A.E.: Magnetic resonance first-pass myocardial perfusion imaging: Clinical validation and future applications. Journal of Magnetic Resonance Imaging 10, 676–685 (1999)

    Article  Google Scholar 

  • Schwitter, J., Nanz, D., Kneifel, S., Bertschinger, K., Buchi, M., Knusel, P.R., Marincek, B., Luscher, T.F., von Schulthess, G.K.: Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: A comparison with positron emission tomography and coronary angiography. Circulation 103, 2230–2235 (2001)

    Google Scholar 

  • Panting, J.R., Gatehouse, P.D., Yang, G.Z., Jerosch-Herold, M., Wilke, N., Firmin, D.N., Pennell, D.J.: Echo-planar magnetic resonance myocardial perfusion imaging: Parametric map analysis and comparison with Thallium SPECT. Journal of Magnetic Resonance Imaging 13, 192–200 (2001)

    Article  Google Scholar 

  • Bidaut, L.M., Vallee, J.P.: Automated registration of dynamic MR images for the quantification of myocardial perfusion. Journal of Magnetic Resonance Imaging 13, 648–655 (2001)

    Article  Google Scholar 

  • Bansal, R., Funka-Lea, G.: Integrated image registration for cardiac MR perfusion data. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 659–666. Springer, Heidelberg (2002)

    Google Scholar 

  • Dornier, C., Ivancevic, M.K., Thevenaz, P., Vallee, J.P.: Improvement in the quantification of myocardial perfusion using an automatic spline-based registration algorithm. Journal of Magnetic Resonance Imaging 18, 160–168 (2003)

    Article  Google Scholar 

  • Gallippi, C.M., Gregg, E.T.: Automatic image registration for MR and ultrasound cardiac images. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 148–154. Springer, Heidelberg (2001)

    Google Scholar 

  • Gao, J., Ablitt, N., Elkington, A., Yang, G.Z.: Deformation modeling based on PLSR for cardiac magnetic resonance perfusion imaging. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 612–619. Springer, Heidelberg (2002)

    Google Scholar 

  • Olafsdottir, H., Stegmann, M.B., Ersboll, B.K., Larsson, H.B.W.: A comparison of FFD-based nonrigid registration and AAMs applied to myocardial perfusion MRI. In: SPIE Medical Imaging (2006)

    Google Scholar 

  • Breeuwer, M., Spreeuwers, L., Quist, M.: Automatic quantitative analysis of cardiac MR perfusion images. In: Proceedings of SPIE Medical Imaging, pp. 733–742 (2001)

    Google Scholar 

  • Gupta, S.N., Solaiyappan, M., Beache, G.M., Arai, A.E., Foo, T.K.F.: Fast method for correcting image misregistration due to organ motion in time-series MRI data. Magnetic Resonance in Medicine 49, 506–514 (2003)

    Article  Google Scholar 

  • Delzescaux, T., Frouin, F., De Cesare, A., Philipp-Foliguet, S., Zeboudj, R., Janier, M., Todd-Pokropek, A., Herment, A.: Adaptive and self-evaluating registration method for myocardial perfusion assessment. Magnetic Resonance Materials in Physics, Biology and Medicine 13, 28–39 (2001)

    Article  Google Scholar 

  • Delzescaux, T., Frouin, F., De Cesare, A., Philipp-Foliguet, S., Todd-Pokropek, A., Herment, A., Janier, M.: Using an adaptive semiautomated self-evaluated registration technique to analyze MRI data for myocardial perfusion assessment. Journal of Magnetic Resonance Imaging 18, 681–690 (2003)

    Article  Google Scholar 

  • Stegmann, M., Olafsdottir, H., Larsson, H.: Unsupervised motion-compensation of multi-slice cardiac perfusion MRI. Medical Image Analysis 9, 394–410 (2005)

    Article  Google Scholar 

  • Hyvarinen, A., Oja, E.: Independent component analysis: Algorithms and applications. Neural Networks 13, 411–430 (2000)

    Article  Google Scholar 

  • Carroll, T.J., Haughton, V.M., Rowley, H.A., Cordes, D.: Confounding effect of large vessels on MR perfusion images analyzed with independent component analysis. American Journal of Neuroradiology 23, 1007–1012 (2002)

    Google Scholar 

  • Quigley, M.A., Haughton, V.M., Carew, J., Cordes, D., Moritz, C.H., Meyerand, M.E.: Comparison of independent component analysis and conventional hypothesis-driven analysis for clinical functional MR image processing. American Journal of Neuroradiology 23, 49–58 (2002)

    Google Scholar 

  • Jerosch-Herold, M., Teja Seethamraju, R., Swingen, C.M., Wilke, N.M., Stillman, A.E.: Analysis of myocardial perfusion MRI. Journal of Magnetic Resonance Imaging 19, 758–770 (2004)

    Article  Google Scholar 

  • Bild, D.E., Bluemke, D.A., Burke, G.L., Detrano, R., Diez Roux, A.V., Folsom, A.R., Greenland, P., Jacob, J.D.R., Kronmal, R., Liu, K., Nelson, J.C., O’Leary, D., Saad, M.F., Shea, S., Szklo, M., Tracy, R.P.: Multi-ethnic study of atherosclerosis: Objectives and design. American Journal of Epidemiology 156, 871–881 (2002)

    Article  Google Scholar 

  • Wang, L., Jerosch-Herold, M., Jacobs, D.R., Shahar, E., Folsom, A.R.: Coronary risk factors and myocardial perfusion in asymptomatic adults: The Multi-Ethnic Study of Atherosclerosis. Journal of American College of Cardiology 47, 565–572 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Milles, J., van der Geest, R.J., Jerosch-Herold, M., Reiber, J.H.C., Lelieveldt, B.P.F. (2007). Fully Automated Registration of First-Pass Myocardial Perfusion MRI Using Independent Component Analysis. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics