Completing Herbelin’s Programme | SpringerLink
Skip to main content

Completing Herbelin’s Programme

  • Conference paper
Typed Lambda Calculi and Applications (TLCA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4583))

Included in the following conference series:

Abstract

In 1994 Herbelin started and partially achieved the programme of showing that, for intuitionistic implicational logic, there is a Curry-Howard interpretation of sequent calculus into a variant of the λ-calculus, specifically a variant which manipulates formally “applicative contexts” and inverts the associativity of “applicative terms”. Herbelin worked with a fragment of sequent calculus with constraints on left introduction. In this paper we complete Herbelin’s programme for full sequent calculus, that is, sequent calculus without the mentioned constraints, but where permutative conversions necessarily show up. This requires the introduction of a lambda-like calculus for full sequent calculus and an extension of natural deduction that gives meaning to “applicative contexts” and “applicative terms”. Such extension is a calculus with modus ponens and primitive substitution that refines von Plato’s natural deduction; it is also a “coercion calculus”, in the sense of Cervesato and Pfenning. The proof-theoretical outcome is noteworthy: the puzzling relationship between cut and substitution is settled; and cut-elimination in sequent calculus is proven isomorphic to normalisation in the proposed natural deduction system. The isomorphism is the mapping that inverts the associativity of applicative terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Cervesato, I., Pfenning, F.: A linear spine calculus. Journal of Logic and Computation 13(5), 639–688 (2003)

    Article  MATH  Google Scholar 

  • Curien, P.-L., Herbelin, H.: The duality of computation. In: Proceedings of International Conference on Functional Programming 2000, IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  • Dyckhoff, R., Pinto, L.: Cut-elimination and a permutation-free sequent calculus for intuitionistic logic. Studia Logica 60, 107–118 (1998)

    Article  MATH  Google Scholar 

  • Dyckhoff, R., Pinto, L.: Permutability of proofs in intuitionistic sequent calculi. Theoretical Computer Science 212, 141–155 (1999)

    Article  MATH  Google Scholar 

  • Santo, J.E.: Conservative extensions of the λ-calculus for the computational interpretation of sequent calculus. PhD thesis, University of Edinburgh (2002) Available at http://www.lfcs.informatics.ed.ac.uk/reports/

  • Espírito Santo, J.: An isomorphism between a fragment of sequent calculus and an extension of natural deduction. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 354–366. Springer, Heidelberg (2002)

    Google Scholar 

  • Espírito Santo, J.: Delayed substitutions. In: Baader, F. (ed.) Proceedings of RTA’07. LNCS, Springer, Heidelberg (2007)

    Google Scholar 

  • Espírito Santo, J., Pinto, L.: Permutative conversions in intuitionistic multiary sequent calculus with cuts. In: Hofmann, M.O. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 286–300. Springer, Heidelberg (2003)

    Google Scholar 

  • Gallier, J.: Constructive logics. Part I: A tutorial on proof systems and typed λ-calculi. Theoretical Computer Science 110, 248–339 (1993)

    Article  Google Scholar 

  • Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The collected papers of Gerhard Gentzen, North-Holland, Amsterdam (1969)

    Google Scholar 

  • Herbelin, H.: A λ-calculus structure isomorphic to a Gentzen-style sequent calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  • Joachimski, F., Matthes, R.: Short proofs of normalization for the simply-typed lambda-calculus, permutative conversions and Gödel’s T. Archive for Mathematical Logic 42, 59–87 (2003)

    Article  MATH  Google Scholar 

  • Kesner, D., Puel, L., Tannen, V.: A typed pattern calculus. Information and Computation, 124(1) (1995)

    Google Scholar 

  • Mints, G.: Normal forms for sequent derivations. In: Odifreddi, P. (ed.) Kreiseliana, pp. 469–492. A.K. Peters, Wellesley, MA (1996)

    Google Scholar 

  • Negri, S., von Plato, J.: Structural Proof Theory. Cambridge (2001)

    Google Scholar 

  • Parigot, M.: λμ-calculus: an algorithmic interpretation of classic natural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  • Pottinger, G.: Normalization as a homomorphic image of cut-elimination. Annals of Mathematical Logic 12, 323–357 (1977)

    MATH  Google Scholar 

  • Prawitz, D.: Natural Deduction. A Proof-Theoretical Study. Almquist and Wiksell, Stockholm (1965)

    Google Scholar 

  • Schwichtenberg, H.: Termination of permutative conversions in intuitionistic gentzen calculi. Theoretical Computer Science, 212 (1999)

    Google Scholar 

  • von Plato, J.: Natural deduction with general elimination rules. Annals of Mathematical Logic 40(7), 541–567 (2001)

    Article  MATH  Google Scholar 

  • Wadler, P.: A Curry-Howard isomorphism for sequent calculus, Manuscript (1993)

    Google Scholar 

  • Zucker, J.: The correspondence between cut-elimination and normalization. Annals of Mathematical Logic 7, 1–112 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Simona Ronchi Della Rocca

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Espírito Santo, J. (2007). Completing Herbelin’s Programme. In: Della Rocca, S.R. (eds) Typed Lambda Calculi and Applications. TLCA 2007. Lecture Notes in Computer Science, vol 4583. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73228-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73228-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73227-3

  • Online ISBN: 978-3-540-73228-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics