Non-constructive Methods for Finite Probabilistic Automata | SpringerLink
Skip to main content

Non-constructive Methods for Finite Probabilistic Automata

  • Conference paper
Developments in Language Theory (DLT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4588))

Included in the following conference series:

  • 427 Accesses

Abstract

Size (the number of states) of finite probabilistic automata with an isolated cut-point can be exponentially smaller than the size of any equivalent finite deterministic automaton. The result is presented in two versions. The first version depends on Artin’s Conjecture (1927) in Number Theory. The second version does not depend on conjectures but the numerical estimates are worse. In both versions the method of the proof does not allow an explicit description of the languages used. Since our finite probabilistic automata are reversible, these results imply a similar result for quantum finite automata.

Research supported by Grant No.05.1528 from the Latvian Council of Science and European Commission, contract IST-1999-11234.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambainis, A.: The complexity of probabilistic versus deterministic finite automata. In: Nagamochi, H., Suri, S., Igarashi, Y., Miyano, S., Asano, T. (eds.) ISAAC 1996. LNCS, vol. 1178, pp. 233–237. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  2. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: Proc. IEEE FOCS 1998, pp. 332–341 (1998)

    Google Scholar 

  3. Artin, E.: Beweis des allgemeinen Reziprozitätsgesetzes. Mat. Sem. Univ. Hamburg B.5, 353–363 (1927)

    Google Scholar 

  4. Aschbacher, M.: Finite Group Theory (Cambridge Studies in Advanced Mathematics), 2nd edn. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Freivalds, R.: On the growth of the number of states in result of the determinization of probabilistic finite automata. Avtomatika i Vichislitel’naya Tekhnika (Russian) (3), 39–42 (1982)

    Google Scholar 

  6. Gabbasov, N.Z., Murtazina, T.A.: Improving the estimate of Rabin’s reduction theorem. Algorithms and Automata, Kazan University, pp. 7–10 (Russian) ( 1979)

    Google Scholar 

  7. Garret, P.: The Mathematics of Coding Theory. Pearson Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  8. Golovkins, M., Kravtsev, M.: Probabilistic Reversible Automata and Quantum Automata. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 574–583. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Hooley, C.: On Artin’s conjecture. J.ReineAngew.Math. 225, 220–229 (1967)

    MathSciNet  Google Scholar 

  10. Heath-Brown, D.R.: Artin’s conjecture for primitive roots. Quart. J. Math. Oxford 37, 27–38 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems in Information Transmission 1, 1–7 (1965)

    MathSciNet  Google Scholar 

  12. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. Proc. IEEE FOCS 1997, pp. 66–75 (1997)

    Google Scholar 

  13. Paz, A.: Some aspects of probabilistic automata. Information and Control 9(1), 26–60 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rabin, M.O.: Probabilistic Automata. Information and Control 6(3), 230–245 (1963)

    Article  Google Scholar 

  15. Spencer, J.: Nonconstructive methods in discrete mathematics. In: Rota, G.-C. (ed.) Studies in Combinatorics (MAA Studies in Mathematics), vol. 17, pp. 142–178. (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tero Harju Juhani Karhumäki Arto Lepistö

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freivalds, R. (2007). Non-constructive Methods for Finite Probabilistic Automata. In: Harju, T., Karhumäki, J., Lepistö, A. (eds) Developments in Language Theory. DLT 2007. Lecture Notes in Computer Science, vol 4588. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73208-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73208-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73207-5

  • Online ISBN: 978-3-540-73208-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics