Abstract
For a pseudojump operator V X and a \(\Pi^0_1\) class P, we consider properties of the set {V X: X ∈ P}. We show that there always exists X ∈ P with \(V^X \leq_T {\mathbf 0'}\) and that if P is Medvedev complete, then there exists X ∈ P with \( V^X \equiv_T {\mathbf 0'}\). We examine the consequences when V X is Turing incomparable with V Y for X ≠ Y in P and when \(W_e^X = W_e^Y\) for all X,Y ∈ P. Finally, we give a characterization of the jump in terms of \(\Pi^0_1\) classes.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cenzer, D., Remmel, J.B.: \(\Pi^0_1\) classes in mathematics, In: Ershov, Y., Goncharov, S., Nerode, A., Remmel, J. (eds.) Handbook of Recursive Mathematics, Part Two, Elsevier Studies in Logic. vol. 139 pp. 623-821. (1998)
Coles, R., Downey, R., Jockusch, C., LaForte, G.: Completing pseudojump operators. Ann. Pure and Appl. Logic 136, 297–333 (2005)
Friedberg, R.M.: A criterion for completeness of degrees of unsolvability. J. Symbolic Logic 22, 159–160 (1957)
Jockusch, C.G.: \(\Pi^0_1\) classes and boolean combinations of recursively enumerable sets. J. Symbolic Logic 39, 95–96 (1974)
Jockusch, C.G., Soare, R.: Degrees of members of \(\Pi^0_1\) classes. Pacific J. Math 40, 605–616 (1972)
Jockusch, C., Soare, R.: \(\Pi^0_1\) classes and degrees of theories. Trans. Amer. Math. Soc 173, 35–56 (1972)
Jockusch, C., Shore, R.: Pseudojump operators I: the r.e. case. Trans. Amer. Math. Soc 275, 599–609 (1983)
Simpson, S.: Mass problems and randomness. Bull. Symbolic Logic 11, 1–27 (2005)
Soare, R.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cenzer, D., LaForte, G., Wu, G. (2007). Pseudojump Operators and \(\Pi^0_1\) Classes. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-73001-9_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73000-2
Online ISBN: 978-3-540-73001-9
eBook Packages: Computer ScienceComputer Science (R0)