A Framework for Ontology Based Rule Acquisition from Web Documents | SpringerLink
Skip to main content

A Framework for Ontology Based Rule Acquisition from Web Documents

  • Conference paper
Web Reasoning and Rule Systems (RR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4524))

Included in the following conference series:

Abstract

Rule based systems and agents are important applications of the Semantic Web constructs such as RDF, OWL, and SWRL. While there are plenty of utilities that support ontology generation and utilization, rule acquisition is still a bottleneck as an obstacle to wide propagation of rule based systems. To automatically acquire rules from unstructured texts, we develop a rule acquisition framework that uses a rule ontology. The ontology can be acquired from the rule base of a similar site, and then is used for rule acquisition in the other sites of the same domain. The procedure of ontology-based rule acquisition consists of rule component identification and rule composition. The former uses stemming and semantic similarity to extract variables and values from the Web page and the latter uses the best-first search method in composing the variables and values into rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alani, H., Kim, S., Millard, D.E., Weal, M.J., Hall, W., Lewis, P.H., Shadbolt, N.R.: Automatic Ontology-Based Knowledge Extraction from Web Documents. IEEE Intelligent Systems 18(1), 14–21 (2003)

    Article  Google Scholar 

  2. Beck, J.C., Fox, M.: A Generic Framework for Constraint Directed Search and Scheduling. AI Magazine 19(4), 101–130 (1998)

    Google Scholar 

  3. Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recommendation (2004), http://www.w3c.org/TR/rdf-schema/

  4. Chae, S.: Ontology-Based Intelligent Rule Component Extraction. Master Thesis, Yonsei University (2006)

    Google Scholar 

  5. Crow, L., Shadbolt, N.: Extracting Focused Knowledge from the Semantic Web. International Journal of Human-Computer Studies 54, 155–184 (2001)

    Article  MATH  Google Scholar 

  6. Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: Ontology based Access to Distributed and Semi-Structured Information. In: Meersman, R. et al. (eds.) Database Semantics, Semantic Issues in Multimedia Systems, Kluwer Academic Publisher, Boston (1999)

    Google Scholar 

  7. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A Semantic Web Rule Language Combining OWL and RuleML, W3C Member Submission (2004), http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

  8. Jones, K.S., Willet, P., (eds.): Readings in Information Retrieval. Morgan Kaufmann Publishers, San Francisco (1997)

    Google Scholar 

  9. Kang, J., Lee, J.K.: Rule Identification from Web Pages by the XRML Approach. Decision Support Systems 41(1), 205–227 (2005)

    Article  Google Scholar 

  10. Lin, D.: An information-theoretic definition of similarity. In: 15th International Conference on Machine Learning, pp. 296–304 (1998)

    Google Scholar 

  11. Manola, F., Miller, E.: Resource Description Framework (RDF) Primer. W3C Recommendation (2004), http://www.w3.org/TR/REC-rdf-syntax/

  12. Miller, G.A.: WordNet a Lexical Database for English. Communications of the ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  13. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, Reading, MA (1984)

    Google Scholar 

  14. Reynolds, D.: Jena 2 Inference Support (2005), http://jena.sourceforge.net/inference

  15. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: 14th International Joint Conference on Artificial Intelligence, pp. 448–453 (1995)

    Google Scholar 

  16. RuleML: The Rule Markup Initiative (2003), http://www.dfki.uni-kl.de/ruleml/

  17. Smith, M.K., Welty, C., McGuinness, D.: OWL Web Ontology Language Guide. W3C Recommendation (2004), http://www.w3c.org/TR/owl-guide/

  18. Volz, R., Oberle, D., Staab, S., Motik, B.: KAON SERVER - A Semantic Web Management System. In: Volz, R., Oberle, D., Staab, S., Motik, B. (eds.) WWW2003. Alternate Track Proceedings of the Twelfth International World Wide Web Conference, Budapest, Hungary, ACM Press, New York (2003)

    Google Scholar 

  19. Zou, Y., Finin, T., Chen, H.: F-OWL: an Inference Engine for Semantic Web. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A. (eds.) FAABS 2004. LNCS (LNAI), vol. 3228, pp. 16–18. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Massimo Marchiori Jeff Z. Pan Christian de Sainte Marie

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Park, S., Kang, J., Kim, W. (2007). A Framework for Ontology Based Rule Acquisition from Web Documents. In: Marchiori, M., Pan, J.Z., Marie, C.d.S. (eds) Web Reasoning and Rule Systems. RR 2007. Lecture Notes in Computer Science, vol 4524. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72982-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72982-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72981-5

  • Online ISBN: 978-3-540-72982-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics