Maximum Likelihood Metameres for Local 2 nd Order Image Structure of Natural Images | SpringerLink
Skip to main content

Maximum Likelihood Metameres for Local 2nd Order Image Structure of Natural Images

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

  • 2712 Accesses

Abstract

We investigate the maximum likelihood metameres of local pure 2nd order structure in natural images. Using the shape index, we re-parameterise the 2nd order structure and gain a one-parameter index which offers a qualitative description of local pure 2nd order image structure. Inspired by Koenderink and previous work within Geometric Texton Theory the maximum likelihood metameres are calculated for a quantised version of the shape index. Results are presented and discussed for natural images, Gaussian noise images, and Brownian or pink noise images. Furthermore, we present statistics for the shape index, principal direction, and curvedness of natural images. Finally, the results are discussed in the terms of their applicability to Geometric Texton Theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

    Google Scholar 

  2. Casorati, F.: Nuova definitione della curvatura delle superficie e suo confronto con quella di gauss. Rend. Maem. Accd. Lomb. (1867/1868)

    Google Scholar 

  3. Daugman, J.G.: Uncertainty relations for resolution in space, spatial frequency, and orientation optimized by two-demensional visual cortical filters. Journal of the Optical Society of America A, 1160–1169 (1985)

    Google Scholar 

  4. Field, D.J.: Relations between the statistics of natural images and the response proporties of cortical cells. J. Optic. Soc. Am. 4(12), 2379–2394 (1987)

    Article  Google Scholar 

  5. Florack, L.M.J., et al.: Cartesian differential invariants in scale-space. Journal of Mathematical Imaging and Vision 3(4), 327–348 (1993)

    Article  Google Scholar 

  6. Griffin, L.D., Lillholm, M.: The 2nd order local-image-structure solid. IEEE Transactions on Pattern Analysis and Machine Intelligence (In Press)

    Google Scholar 

  7. Lillholm, M., Griffin, L.D.: Image Features and the 1-D, 2nd Order Gaussian Derivative Jet. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 26–37. Springer, Heidelberg (2005)

    Google Scholar 

  8. Griffin, L.D., Lillholm, M.: Hypotheses for image features, icons and textons. International Journal of Computer Vision 70(3), 213–230 (2006)

    Article  Google Scholar 

  9. Griffin, L.D., Lillholm, M., Nielsen, M.: Natural image profiles are most likely to be step edges. Vision Research 44(4), 407–421 (2004)

    Article  Google Scholar 

  10. Harris, C., Stephens, M.J.: A combined corner and edge detector. In: Alvey’88, pp. 147–152 (1988)

    Google Scholar 

  11. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology 195, 215–243 (1968)

    Google Scholar 

  12. Jones, J.P., Palmer, L.A.: The two-dimensional spatial structure of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58(6), 1233–1258 (1987)

    Google Scholar 

  13. Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  14. Koenderink, J.J.: What is a feature? Journal of Intelligent Systems 3(1), 49–82 (1993)

    MathSciNet  Google Scholar 

  15. Koenderink, J.J., van Doorn, A.J.: Receptive field assembly specificity. Journal of Visual Communication and Image Representation 3(1), 1–12 (1992)

    Article  Google Scholar 

  16. Koenderink, J.J., van Doorn, A.J.: Metamerism in complete sets of image operators. In: Advances in Image Understading ’96, pp. 113–129 (1996)

    Google Scholar 

  17. Koenderink, J.J., van Doorn, A.J.: Local image operators and iconic structure. In: Sommer, G. (ed.) AFPAC 1997. LNCS, vol. 1315, pp. 66–93. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  18. Koenderink, J.J., van Doorn, A.J.: Receptive-field families. Biological Cybernetics 63(4), 291–297 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Koenderink, J.J., van Doorn, A.J.: Local Structure of Gaussian Texture. IEICE Transactions on Information and Systems 86(7), 1165–1171 (2003)

    Google Scholar 

  20. Leung, T., Malik, J.: Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons. International Journal of Computer Vision 43(1), 29–44 (2001)

    Article  MATH  Google Scholar 

  21. Lillholm, M., Nielsen, M., Griffin, L.D.: Feature-based image analysis. International Journal of Computer Vision 52(2-3), 73–95 (2003)

    Article  Google Scholar 

  22. Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30(2), 79–116 (1998)

    Article  Google Scholar 

  23. Liu, X., Wang, D.L.: A spectral histogram model for texton modeling and texture discrimination. Vision Research 42(23), 2617–2634 (2002)

    Article  Google Scholar 

  24. Marr, D.: Vision: A computational investigation into the human representation and processing of visual information. W.H. Freeman, New York (1982)

    Google Scholar 

  25. Nasrallah, A.J., Griffin, L.D.: Gradient direction dependencies in natural images. Spatial Vision, Accepted (Oct. 2006)

    Google Scholar 

  26. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D, 259–268 (1992)

    Google Scholar 

  27. van Hateren, J.H., van der Schaaf, A.: Independent components filters of natural images compared with simple cells in primary visual cortex. Proc. R. Soc., London Series B 265, 359–366 (1998)

    Article  Google Scholar 

  28. Varma, M., Zisserman, A.: A Statistical Approach to Texture Classification from Single Images. International Journal of Computer Vision 62(1), 61–81 (2005)

    Google Scholar 

  29. Young, R.A.: The gaussian derivative theory of spatial vision: Analysis of cortical receptive field line-weighting profiles. Gen. Motors Res. Tech. Rep, GMR-4920 (1985)

    Google Scholar 

  30. Zhu, S.C., et al.: What are Textons? International Journal of Computer Vision 62(1), 121–143 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Lillholm, M., Griffin, L.D. (2007). Maximum Likelihood Metameres for Local 2nd Order Image Structure of Natural Images. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics