Orbital Branching | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4513))

Abstract

We introduce orbital branching, an effective branching method for integer programs containing a great deal of symmetry. The method is based on computing groups of variables that are equivalent with respect to the symmetry remaining in the problem after branching, including symmetry which is not present at the root node. These groups of equivalent variables, called orbits, are used to create a valid partitioning of the feasible region which significantly reduces the effects of symmetry while still allowing a flexible branching rule. We also show how to exploit the symmetries present in the problem to fix variables throughout the branch-and-bound tree. Orbital branching can easily be incorporated into standard IP software. Through an empirical study on a test suite of symmetric integer programs, the question as to the most effective orbit on which to base the branching decision is investigated. The resulting method is shown to be quite competitive with a similar method known as isomorphism pruning and significantly better than a state-of-the-art commercial solver on symmetric integer programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch and Price: Column generation for solving huge integer programs. Operations Research 46, 316–329 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Holm, S., Sørensen, M.: The optimal graph partitioning problem: Solution method based on reducing symmetric nature and combinatorial cuts. OR Spectrum 15, 1–8 (1993)

    MATH  Google Scholar 

  3. Méndez-Díaz, I., Zabala, P.: A branch-and-cut algorithm for graph coloring. Discrete Applied Mathematics 154(5), 826–847 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Macambira, E.M., Maculan, N., de Souza, C.C.: Reducing symmetry of the SONET ring assignment problem using hierarchical inequalities. Technical Report ES-636/04, Programa de Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro (2004)

    Google Scholar 

  5. Rothberg, E.: Using cuts to remove symmetry. Presented at the \(17^{\mbox{th}}\) International Symposium on Mathematical Programming

    Google Scholar 

  6. Sherali, H.D., Smith, J.C.: Improving zero-one model representations via symmetry considerations. Management Science 47(10), 1396–1407 (2001)

    Article  Google Scholar 

  7. Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Mathemathical Programming, To appear (2007)

    Google Scholar 

  8. Kaibel, V., Peinhardt, M., Pfetsch, M.E.: Orbitopal fixing. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 74–88. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Margot, F.: Pruning by isomorphism in branch-and-cut. Mathematical Programming 94, 71–90 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Margot, F.: Exploiting orbits in symmetric ILP. Mathematical Programming, Series B 98, 3–21 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bazaraa, M.S., Kirca, O.: A branch-and-bound heuristic for solving the quadratic assignment problem. Naval Research Logistics Quarterly 30, 287–304 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nemhauser, G.L., Savelsbergh, M.W.P., Sigismondi, G.C.: MINTO, a Mixed INTeger Optimizer. Operations Research Letters 15, 47–58 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. McKay, B.D.: Nauty User’s Guide (Version 1.5). Australian National University, Canberra (2002)

    Google Scholar 

  14. Foggia, P., Sansone, C., Vento, M.: A preformance comparison of five algorithms for graph isomorphism. In: Proc. 3rd IAPR-TC15 Workshop Graph-Based Representations in Pattern Recognition, pp. 188–199 (2001)

    Google Scholar 

  15. Litsyn, S.: An updated table of the best binary codes known. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, vol. 1, pp. 463–498. Elsevier, Amsterdam (1998)

    Google Scholar 

  16. Mills, W.H., Mullin, R.C.: Coverings and packings. In: Contemporary Design Theory: A Collection of Surveys, pp. 371–399. Wiley, Chichester (1992)

    Google Scholar 

  17. Hamalainen, H., Honkala, I., Litsyn, S., Östergård, P.: Football pools—A game for mathematicians. American Mathematical Monthly 102, 579–588 (1995)

    Article  MathSciNet  Google Scholar 

  18. Fulkerson, D.R., Nemhauser, G.L., Trotter, L.E.: Two computationally difficult set covering problems that arise in computing the 1-width of incidence matrices of Steiner triples. Mathematical Programming Study 2, 72–81 (1973)

    Google Scholar 

  19. Margot, F.: Small covering designs by branch-and-cut. Mathematical Programming 94, 207–220 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Mathematical Programming 91, 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Matteo Fischetti David P. Williamson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S. (2007). Orbital Branching. In: Fischetti, M., Williamson, D.P. (eds) Integer Programming and Combinatorial Optimization. IPCO 2007. Lecture Notes in Computer Science, vol 4513. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72792-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72792-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72791-0

  • Online ISBN: 978-3-540-72792-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics