On Integer Programming and the Branch-Width of the Constraint Matrix | SpringerLink
Skip to main content

On Integer Programming and the Branch-Width of the Constraint Matrix

  • Conference paper
Integer Programming and Combinatorial Optimization (IPCO 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4513))

Abstract

Consider an integer program max (c t x : Ax = b, x ≥ 0, x ∈ Z n) where A ∈ Z m×n, b ∈ Z m, and c ∈ Z n. We show that the integer program can be solved in pseudo-polynomial time when A is non-negative and the column-matroid of A has constant branch-width.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Courcelle, B.: Graph rewriting: An algebraic and logical approach. In: van Leeuwnen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, North-Holland, Amsterdam (1990)

    Google Scholar 

  2. Cunningham, W.H.: Improved bounds for matroid partition and intersection algorithms. SIAM J. Comput. 15, 948–957 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Garey, M.R., Johnson, D.S.: Computers and Intractability. A guide to the theory of NP-completeness. A series of books in the mathematical sciences. H. Freeman and Co., San Francisco (1979)

    MATH  Google Scholar 

  4. Hliněný, P.: Branch-width, parse trees and monadic second-order logic for matroids. Manuscript (2002)

    Google Scholar 

  5. Lueker, G.S.: Two NP-complete problems in non-negative integer programming. Report No. 178, Department of Computer Science, Princeton University, Princeton, N.J. (1975)

    Google Scholar 

  6. Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Combin. Theory, Ser. B 96, 514–528 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Oum, S., Seymour, P.D.: Testing branch-width. To appear in J. Combin. Theory, Ser. B

    Google Scholar 

  8. Oxley, J.G.: Matroid Theory. Oxford University Press, New York (1992)

    MATH  Google Scholar 

  9. Papadimitriou, C.H.: On the complexity of integer programming. J. Assoc. Comput. Mach. 28, 765–768 (1981)

    MATH  MathSciNet  Google Scholar 

  10. Robertson, N., Seymour, P.D.: Graph Minors. X. Obstructions to tree-decomposition. J. Combin. Theory, Ser. B 52, 153–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Robertson, N., Seymour, P.D.: Graph Minors. XVI. Excluding a non-planar graph. J. Combin. Theory, Ser. B 89, 43–76 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Seymour, P.D.: Decomposition of regular matroids. J. Combin. Theory, Ser. B 28, 305–359 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Tutte, W.T.: A homotopy theorem for matroids, I, II. Trans. Amer. Math. Soc. 88, 144–174 (1958)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Matteo Fischetti David P. Williamson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Cunningham, W.H., Geelen, J. (2007). On Integer Programming and the Branch-Width of the Constraint Matrix. In: Fischetti, M., Williamson, D.P. (eds) Integer Programming and Combinatorial Optimization. IPCO 2007. Lecture Notes in Computer Science, vol 4513. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72792-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72792-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72791-0

  • Online ISBN: 978-3-540-72792-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics