Abstract
The spectral graph theories have been widely used in the domain of image clustering where editing distances between graphs are critical. This paper presents a method for spectral edit distance between the graphs constructed on the images. Using the feature points of each image, we define a weighted adjacency matrix of the relational graph and obtain a covariance matrix based on the spectra of all the graphs. Then we project the vectorized spectrum of each graph to the eigenspace of the covariance matrix, and derive the distances between pairwise graphs. We also conduct some theoretical analyses to support our method. Experiments on both synthetic data and real-world images demonstrate the effectiveness of our approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Guillamet, D., Vitri, J., Schiele, B.: Introducing a weighted non-negative matrix factorization for image classification. Pattern Recognition Letters 24, 2447–2454 (2003)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(24), 509–522 (2002)
Park, S.B., et al.: Content-based image classification using a neural network. Pattern Recognition Letters 25, 287–300 (2004)
Giacinto, G., et al.: Combination of neural and statistical algorithms for supervised classification of remote-sensing images. Pattern Recognition Letters 21, 385–397 (2000)
Lozano, M.A., Escolano, F.: ACM attributed graph clustering for learning classes of images. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 247–258. Springer, Heidelberg (2003)
Bunke, H., et al.: Graph clustering using the weighted minimum common supergraph. In: Hancock, E.R., Vento, M. (eds.) GbRPR 2003. LNCS, vol. 2726, pp. 235–246. Springer, Heidelberg (2003)
Bagdanov, A.D., Worring, M.: First order Gaussian graphs for efficient structure classification. Pattern Recognition 36, 1311–1324 (2003)
Qiu, H., Hancock, E.R.: Graph matching and clustering using spectral partitions. Pattern Recognition 39, 22–34 (2006)
Luo, B., Wilson, R.C., Hancock, E.R.: A spectral approach to learning structural variations in graphs. Pattern Recognition 39, 1188–1198 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Wang, N., Tang, J., Zhang, J., Fan, YZ., Liang, D. (2007). Spectral Edit Distance Method for Image Clustering. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds) Advances in Data and Web Management. APWeb WAIM 2007 2007. Lecture Notes in Computer Science, vol 4505. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72524-4_37
Download citation
DOI: https://doi.org/10.1007/978-3-540-72524-4_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72483-4
Online ISBN: 978-3-540-72524-4
eBook Packages: Computer ScienceComputer Science (R0)