A Method for Creating Ensemble Neural Networks Using a Sampling Data Approach | SpringerLink
Skip to main content

Part of the book series: Advances in Soft Computing ((AINSC,volume 41))

Abstract

Ensemble Neural Networks are a learning paradigm where many neural networks are used together to solve a particular problem. In this paper, the relationship between the ensemble and its component neural networks is analyzed with the goal of creating of a set of nets for an ensemble with the use of a sampling-technique. This technique is such that each net in the ensemble is trained on a different sub-sample of the training data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tourassi, G.D., Floyd, C.E.: The effect of data sampling on the performance evaluation of artificial neural networks in medical diagnosis. Med. Decis. Making 17(2), 186–192 (1997) PMID: 9107614 [PubMed - indexed for MEDLINE]

    Article  Google Scholar 

  2. Opitz, D.W.: Feature Selection for Ensembles. In: Sixteenth National Conference on Artificial/ Intelligence, Orlando, FL, pp. 379–384. AAAI, Menlo Park (1999)

    Google Scholar 

  3. Sharkey, A.: On combining artificial neural nets. Connection Science 8, 299–313 (1996)

    Article  Google Scholar 

  4. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Breiman, L.: Stacked Regressions. Machine Learning 24(1), 49–64 (1996)

    MATH  MathSciNet  Google Scholar 

  6. Opitz, D.W., Shavlik, J.W.: Generating Accurate and Diverse Members of a Neural-Networks Ensemble. In: Touretzky, D.S., Mozer, M., Hasselmo, M. (eds.) Neural Information Processing Systems 8, pp. 535–541. MIT Press, Cambridge (1996)

    Google Scholar 

  7. Cunningham, P.: Overfitting and Diversity in Classification Ensembles based on Feature Selection. TCD Computer Science Technical Report, TCD-CS-2000-07

    Google Scholar 

  8. Ganguly, A.R., Bras, R.L.: An Ensemble Neural Networks strategy for time series and spatio-temporal forecasting applications. In: American Geophysical Union Spring Meeting, Washington, DC (2002)

    Google Scholar 

  9. Gutta, S., et al.: Face Recognition Using Ensembles of Netrworks. In: 13th International Conference on Pattern Recognition (ICPR’96), vol. 4, Vienna, Austria, p. 50 (1996)

    Google Scholar 

  10. Opitz, D., Maclin, R.: Popular Ensemble Methods: An Empirical Study. Journal of Artificial Intelligence Research 11, 169–198 (1999)

    MATH  Google Scholar 

  11. Sharkey, A.J.C., Sharkey, N.E., Chandroth, G.O.: Neural Nets and Diversity. In: Proceedings of the 14th International Conference on Computer Safety, Reliability and Security, Belgirate, Italy (1995)

    Google Scholar 

  12. Sharkey, A.J.C., Sharkey, N.E., Neary, J.: Searching weight space for backpropagation solutions type. In: Niklasson, L.F., Boden, M.B. (eds.) Current Trends in Connectionism, pp. 103–121. Lawrence Erlbaum, Hillsdale (1995)

    Google Scholar 

  13. Opitz, D.W., Shavlik, J.W.: Generating accurate and diverse members of a neural networkensemble. In: Touretzky, D.S., Mozer, M., Hasselmo, M. (eds.) Advances in Neural Information Processing Systems 8, pp. 535–541. MIT Press, Cambridge (1996)

    Google Scholar 

  14. Maclin, R., Opitz, D.W.: An Empirical Evaluation of Bagging and Boosting. In: AAAI/IAAI 1997, pp. 546–551. AAAI, Menlo Park (1997)

    Google Scholar 

  15. Sharkey, A.J.C.: Modularity, combining and artificial neural nets. Connection Science 9(1), 3–10 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Patricia Melin Oscar Castillo Eduardo Gomez Ramírez Janusz Kacprzyk Witold Pedrycz

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lopez, M., Melin, P., Castillo, O. (2007). A Method for Creating Ensemble Neural Networks Using a Sampling Data Approach. In: Melin, P., Castillo, O., Ramírez, E.G., Kacprzyk, J., Pedrycz, W. (eds) Analysis and Design of Intelligent Systems using Soft Computing Techniques. Advances in Soft Computing, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72432-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72432-2_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72431-5

  • Online ISBN: 978-3-540-72432-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics