Abstract
A common problem of ubiquitous sensor-network computing is combining evidence between multiple agents or experts. We demonstrate that the latent structure influence model, our novel formulation for combining evidence from multiple dynamic classification processes (“experts”), can achieve greater accuracy, efficiency, and robustness to data corruption than standard methods such as HMMs. It accomplishes this by simultaneously modeling the structure of interaction and the latent states.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asavathiratham, C.: The Influence Model: A Tractable Representation for the Dynamics of Networked Markov Chains. PhD thesis, MIT (1996)
Basu, S., et al.: Learning human interactions with the influence model. Technical report, MIT Media Laboratory Vision & Modeling Technical Report #539 (2001), http://vismod.media.mit.edu/tech-reports/TR-539.pdf
Blum, M., Pentland, A., Tröster, G.: Insense: Interest-based life logging. IEEE Multimedia 13(4), 40–48 (2006)
DARPA. Assist proposer information pamphlet (2004), http://www.darpa.mil/ipto/solicitations/open/04-38_PIP.htm
Eagle, N., Pentland, A.: Reality mining: Sensing complex social systems. Journal of Personal and Ubiquitous Computing (2005)
Murphy, K.: The bayes net toolbox for matlab. In: Computing Science and Statistics (2001)
Oliver, N.M., Rosario, B., Pentland, A.: A bayesian computer vision system for modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 831–843 (2000)
Pantic, M., et al.: Human computing and machine understanding of human behavior: A survey. In: Proceedings of the 8th International Converence on Multimodal Interfaces, pp. 239–248 (2006)
Raento, M., et al.: Contextphone — a prototyping platform for context-aware mobile applications. IEEE Pervasive Computer (April 2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Dong, W., Pentland, A. (2007). Modeling Influence Between Experts. In: Huang, T.S., Nijholt, A., Pantic, M., Pentland, A. (eds) Artifical Intelligence for Human Computing. Lecture Notes in Computer Science(), vol 4451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72348-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-72348-6_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72346-2
Online ISBN: 978-3-540-72348-6
eBook Packages: Computer ScienceComputer Science (R0)