Modeling Influence Between Experts | SpringerLink
Skip to main content

Modeling Influence Between Experts

  • Conference paper
Artifical Intelligence for Human Computing

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4451))

Abstract

A common problem of ubiquitous sensor-network computing is combining evidence between multiple agents or experts. We demonstrate that the latent structure influence model, our novel formulation for combining evidence from multiple dynamic classification processes (“experts”), can achieve greater accuracy, efficiency, and robustness to data corruption than standard methods such as HMMs. It accomplishes this by simultaneously modeling the structure of interaction and the latent states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asavathiratham, C.: The Influence Model: A Tractable Representation for the Dynamics of Networked Markov Chains. PhD thesis, MIT (1996)

    Google Scholar 

  2. Basu, S., et al.: Learning human interactions with the influence model. Technical report, MIT Media Laboratory Vision & Modeling Technical Report #539 (2001), http://vismod.media.mit.edu/tech-reports/TR-539.pdf

  3. Blum, M., Pentland, A., Tröster, G.: Insense: Interest-based life logging. IEEE Multimedia 13(4), 40–48 (2006)

    Article  Google Scholar 

  4. DARPA. Assist proposer information pamphlet (2004), http://www.darpa.mil/ipto/solicitations/open/04-38_PIP.htm

  5. Eagle, N., Pentland, A.: Reality mining: Sensing complex social systems. Journal of Personal and Ubiquitous Computing (2005)

    Google Scholar 

  6. Murphy, K.: The bayes net toolbox for matlab. In: Computing Science and Statistics (2001)

    Google Scholar 

  7. Oliver, N.M., Rosario, B., Pentland, A.: A bayesian computer vision system for modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 831–843 (2000)

    Article  Google Scholar 

  8. Pantic, M., et al.: Human computing and machine understanding of human behavior: A survey. In: Proceedings of the 8th International Converence on Multimodal Interfaces, pp. 239–248 (2006)

    Google Scholar 

  9. Raento, M., et al.: Contextphone — a prototyping platform for context-aware mobile applications. IEEE Pervasive Computer (April 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas S. Huang Anton Nijholt Maja Pantic Alex Pentland

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Dong, W., Pentland, A. (2007). Modeling Influence Between Experts. In: Huang, T.S., Nijholt, A., Pantic, M., Pentland, A. (eds) Artifical Intelligence for Human Computing. Lecture Notes in Computer Science(), vol 4451. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72348-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72348-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72346-2

  • Online ISBN: 978-3-540-72348-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics