Dinucleotide Step Parameterization of Pre-miRNAs Using Multi-objective Evolutionary Algorithms | SpringerLink
Skip to main content

Dinucleotide Step Parameterization of Pre-miRNAs Using Multi-objective Evolutionary Algorithms

  • Conference paper
Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics (EvoBIO 2007)

Abstract

MicroRNAs (miRNAs) form a large functional family of small noncoding RNAs and play an important role as posttranscriptional regulators, by repressing the translation of mRNAs. Recently, the processing mechanism of miRNAs has been reported to involve Drosha/DGCR8 complex and Dicer, however, the exact mechanism and molecular principle are still unknown. We thus have tried to understand the related phenomena in terms of the tertiary structure of pre-miRNA. Unfortunately, the tertiary structure of RNA double helix has not been studied sufficiently compared to that of DNA double helix. The tertiary structure of pre-miRNA double helix is determined by 15 types of dinucleotide step (d-step) parameters for three classes of angles, i.e., twist, roll, and tilt. In this study, we estimate the 45 d-step parameters (15 types by 3 classes) using an evolutionary algorithm, under several assumptions inferred from the literature. Considering the trade-off among the four objective functions in our study, we deployed a multi-objective evolutionary algorithm, NSGA-II, to the search for a nondominant set of parameters. The performance of our method was evaluated on a separate test dataset. Our study provides a novel approach to understanding the processing mechanism of pre-miRNAs with respect to their tertiary structure and would be helpful for developing a comprehensible prediction method for pre-miRNA and mature miRNA structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zuker, M.: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13), 3406–3415 (2003)

    Article  Google Scholar 

  2. Olson, W.K.: DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc. Natl. Acad. Sci. U S A 95(19), 11163–11168 (1998)

    Article  Google Scholar 

  3. Strahs, D., Schlick, T.: A-Tract bending: insights into experimental structures by computational models. J. Mol. Biol. 301(3), 643–663 (2000)

    Article  Google Scholar 

  4. MacKerell, A.D.: Empirical force fields: Overview and parameter optimization. In: 43th Sanibel Symposium (2003)

    Google Scholar 

  5. Wang, J., Kollman, P.A.: Automatic parameterization of force field by systematic search and genetic algorithms. Journal of Computational Chemistry 22, 1219–1228 (2001)

    Article  Google Scholar 

  6. K. Deb, T. Goel: Controlled elitist non-dominated sorting genetic algorithm for better convergence. In: Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization (2001)

    Google Scholar 

  7. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  8. Mostaghim, S., Hoffman, M., Koenig, P.H., Frauenheim, T., Teich, J.: Molecular Force Field Parameterization using Multi-Objective Evolutionary Algorithms. In: Proceedings of the Congress on Evolutionary Computation (CEC ’04), Portland, U.S.A. (2004)

    Google Scholar 

  9. Shin, S.-Y., Lee, I.-H., Kim, D., Zhang, B.-T.: Multi-objective evolutionary optimization of DNA sequences for reliable DNA computing. IEEE Transactions on Evolutionary Computation 9(2), 143–158 (2005)

    Article  Google Scholar 

  10. Lagos-Quintana, M., et al.: Identification of novel genes coding for small expressed RNAs. Science 294(5543), 853–858 (2001)

    Article  Google Scholar 

  11. Kim, V.N.: Small RNAs: Classification, Biogenesis, and Function. Mol. Cells 19(1), 1–15 (2005)

    Article  Google Scholar 

  12. Lee, Y., et al.: The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956), 415–419 (2003)

    Article  Google Scholar 

  13. Kim, V.N.: MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell. Biol. 6(5), 376–385 (2005)

    Article  Google Scholar 

  14. Zeng, Y., Yi, R., Cullen, B.R.: Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. Embo. J. 24(1), 138–148 (2005)

    Article  Google Scholar 

  15. Schlick, T.: Molecular modeling and simulation. In: Antman, S.S., et al. (eds.) Interdisciplinary Applied mathematics, vol. 21, Springer, New York (2002)

    Google Scholar 

  16. Mathews, D.H.: Predicting a set of minimal free energy RNA secondary structures common to two sequences. Bioinformatics 21(10), 2246–2253 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Elena Marchiori Jason H. Moore Jagath C. Rajapakse

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Nam, JW., Lee, IH., Hwang, KB., Park, SB., Zhang, BT. (2007). Dinucleotide Step Parameterization of Pre-miRNAs Using Multi-objective Evolutionary Algorithms. In: Marchiori, E., Moore, J.H., Rajapakse, J.C. (eds) Evolutionary Computation,Machine Learning and Data Mining in Bioinformatics. EvoBIO 2007. Lecture Notes in Computer Science, vol 4447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71783-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71783-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71782-9

  • Online ISBN: 978-3-540-71783-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics