Variational Upper Bounds for Probabilistic Phylogenetic Models | SpringerLink
Skip to main content

Variational Upper Bounds for Probabilistic Phylogenetic Models

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4453))

Abstract

Probabilistic phylogenetic models which relax the site independence evolution assumption often face the problem of infeasible likelihood computations, for example for the task of selecting suitable parameters for the model. We present a new approximation method, applicable for a wide range of probabilistic models, which guarantees to upper bound the true likelihood of data, and apply it to the problem of probabilistic phylogenetic models. The new method is complementary to known variational methods that lower bound the likelihood, and it uses similar methods to optimize the bounds from above and below. We applied our method to aligned DNA sequences of various lengths from human in the region of the CFTR gene and homologous from eight mammals, and found the upper bounds to be appreciably close to the true likelihood whenever it could be computed. When computing the exact likelihood was not feasible, we demonstrated the proximity of the upper and lower variational bounds, implying a tight approximation of the likelihood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Bishop, C., Winn, J.: Structured variational distributions in VIBES. In: Artificial Intelligence and Statistics, Key West, Florida, USA, 2003, Society for Artificial Intelligence and Statistics (2003)

    Google Scholar 

  2. Cooper, G.: Probabilistic inference using belief networks is NP-hard. Artificial Intelligence 42, 393–405 (1990)

    Article  MathSciNet  Google Scholar 

  3. Dagum, P., Luby, M.: Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence 60(1), 141–153 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelligence 113(1-2), 41–85 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368–376 (1981)

    Article  Google Scholar 

  6. Fishelson, M., Geiger, D.: Exact genetic linkage computations for general pedigrees. Bioinformatics 18, S189–S198 (2002)

    Google Scholar 

  7. Geiger, D., Meek, C., Wexler, Y.: A variational inference procedure allowing internal structure for overlapping clusters and deterministic constraints. Journal of Artificial Intelligence Research (JAIR) 27, 1–23 (2006)

    MathSciNet  Google Scholar 

  8. Ghahramani, Z., Jordan, M.I.: Factorial hidden Markov models. Machine Learning 29, 245–273 (1997)

    Article  MATH  Google Scholar 

  9. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, New York (2001)

    MATH  Google Scholar 

  10. Jojic, V., Jojic, N., Meek, C., Geiger, D., Siepel, A., Haussler, D., Heckerman, D.: Efficient approximations for learning phylogenetic HMM models from data. Bioinformatics 20, 161–168 (2004)

    Article  Google Scholar 

  11. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to variational methods for graphical models. In: Learning Graphical Models, MIT Press, Cambridge (1999)

    Google Scholar 

  12. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Transactions on information theory 47(2), 498–519 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Neyman, J.: Molecular studies of evolution: a source of novel statistical problems. In: Gupta, S.S., Yackel, J. (eds.) Statistical desicion theory and related topics, pp. 1–27. Academic Press, New York (1971)

    Google Scholar 

  14. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  15. Saul, L.K., Jordan, M.I.: Exploiting tractable substructures in intractable networks. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems (NIPS), vol. 8, pp. 486–492. MIT Press, Cambridge (1996)

    Google Scholar 

  16. Siepel, A., Haussler, D.: Combining phylogenetic and hidden markov models in biosequence analysis. In: RECOMB ’03: Proceedings of the seventh annual international conference on Research in computational molecular biology, pp. 277–286. ACM Press, New York (2003)

    Chapter  Google Scholar 

  17. Wiegerinck, W.: Variational approximations between mean field theory and the junction tree algorithm. In: UAI ’00: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pp. 626–633. Morgan Kaufmann Publishers, San Francisco (2000)

    Google Scholar 

  18. Xing, E.P., Jordan, M.I., Russell, S.: Graph partition strategies for generalized mean field inference. In: AUAI ’04: Proceedings of the 20th conference on Uncertainty in artificial intelligence, pp. 602–610. AUAI Press, Arlington (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Terry Speed Haiyan Huang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Wexler, Y., Geiger, D. (2007). Variational Upper Bounds for Probabilistic Phylogenetic Models. In: Speed, T., Huang, H. (eds) Research in Computational Molecular Biology. RECOMB 2007. Lecture Notes in Computer Science(), vol 4453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71681-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71681-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71680-8

  • Online ISBN: 978-3-540-71681-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics