Boosting RVM Classifiers for Large Data Sets | SpringerLink
Skip to main content

Boosting RVM Classifiers for Large Data Sets

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4432))

Included in the following conference series:

  • 2045 Accesses

Abstract

Relevance Vector Machines (RVM) extend Support Vector Machines (SVM) to have probabilistic interpretations, to build sparse training models with fewer basis functions (i.e., relevance vectors or prototypes), and to realize Bayesian learning by placing priors over parameters (i.e., introducing hyperparameters). However, RVM algorithms do not scale up to large data sets. To overcome this problem, in this paper we propose a RVM boosting algorithm and demonstrate its potential with a text mining application. The idea is to build weaker classifiers, and then improve overall accuracy by using a boosting technique for document classification. The algorithm proposed is able to incorporate all the training data available; when combined with sampling techniques for choosing the working set, the boosted learning machine is able to attain high accuracy. Experiments on REUTERS benchmark show that the results achieve competitive accuracy against state-of-the-art SVM; meanwhile, the sparser solution found allows real-time implementations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tipping, M.: Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research I, 211–214 (2001)

    Google Scholar 

  2. Seeger, M., Williams, C., Lawrence, N.: Fast Forward Selection to Speed up Sparse Gaussian Process Regression. In: International Workshop on AI and Statistics (2003)

    Google Scholar 

  3. Csató, L., Opper, M.: Sparse Online Gaussian Processes. Neural Computation 14, 641–668 (2002)

    Article  MATH  Google Scholar 

  4. Smola, A., Bartlett, P.: Sparse Greedy Gaussian Processes Regression. In: Advances in Neural Information Processing 13, pp. 619–625 (2001)

    Google Scholar 

  5. Candela, J.: Learning with Uncertainty - Gaussian Processes and Relevance Vector Machines. PhD thesis, Technical University of Denmark (2004)

    Google Scholar 

  6. Tipping, M., Faul, A.: Fast Marginal Likelihood Maximisation for Sparse Bayesian Models. In: International Workshop on Artificial Intelligence and Statistics (2003)

    Google Scholar 

  7. Freund, Y., Schapire, R.: Experiments with a new boosting algorithm. In: International Conference Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  8. Vapnik, V.: The Nature of Statistical Learning Theory, 2nd edn. Springer, Heidelberg (1999)

    Google Scholar 

  9. Schapire, R., Singer, Y.: Boostexter: A Boosting-based System for Text Categorization. Machine Learning 39(2/3), 135–168 (2000)

    Article  MATH  Google Scholar 

  10. Sebastiani, F.: Classification of Text, Automatic. In: Brown, K. (ed.) The Encyclopedia of Language and Linguistics, 2nd edn., vol. 14, Elsevier, Amsterdam (2006)

    Google Scholar 

  11. Eyheramendy, S., Genkin, A., Ju, W., Lewis, D., Madigan, D.: Sparse Bayesian Classifiers for Text Classification. Journal of Intelligence Community R&D (2003)

    Google Scholar 

  12. Lewis, D.: An evaluation of phrasal and clustered representations on a text categorization task. In: 15th International ACMSIGIR Conference on Research and Development in Information Retrieval, pp. 37–50 (1992)

    Google Scholar 

  13. van Rijsbergen, C.: Information Retrieval, 2nd edn. Butterworths, London (1979)

    Google Scholar 

  14. Ruiz, M., Srinivasan, P.: Hierarchical Text Categorization Using Neural Networks. Information Retrieval 5, 87–118 (2002)

    Article  MATH  Google Scholar 

  15. Yang, Y., Zhang, J., Kisiel, B.: A Scalability Analysis of Classifiers in Text Categorization. In: SIGIR ’03, pp. 96–103. ACM Press, New York (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bartlomiej Beliczynski Andrzej Dzielinski Marcin Iwanowski Bernardete Ribeiro

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Silva, C., Ribeiro, B., Sung, A.H. (2007). Boosting RVM Classifiers for Large Data Sets. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71629-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71629-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71590-0

  • Online ISBN: 978-3-540-71629-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics