Neural Systems for Short-Term Forecasting of Electric Power Load | SpringerLink
Skip to main content

Neural Systems for Short-Term Forecasting of Electric Power Load

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4432))

Included in the following conference series:

Abstract

In this paper a neural system for daily forecasting of electric power load in Poland is presented. Basing on the simplest neural architecture - a multi-layer perceptron - more and more complex system is built step by step. A committee rule-aided hierarchical system consisting of modular ANNs is obtained as a result. The forecasting mean absolute percentage error (MAPE) of the most effective system is about 1.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdel-Aal, R.E., Al-Garni, A.Z.: Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate time-series analysis. Fuel and Energy Abstracts 38, 452–452 (1997)

    Google Scholar 

  2. Abdel-Aal, R.E., Al-Garni, A.Z., Al-Nassar, Y.N.: Modelling and forecasting monthly electric energy consumption in eastern Saudi Arabia using abductive networks. Energy 22, 911–921 (1997)

    Article  Google Scholar 

  3. Abdel-Aal, R.E.: Short-term hourly load forecasting using abductive networks. IEEE Transactions on Power Systems 19, 164–173 (2004)

    Article  Google Scholar 

  4. Abdel-Aal, R.E.: Improving electric load forecasts using network committees. Electric Power Systems Research 74, 83–94 (2005)

    Article  Google Scholar 

  5. Abdel-Aal, R.E.: Modeling and forecasting electric daily peak loads using abductive networks. International Journal of Electrical Power and Energy Systems 28, 133–141 (2006)

    Article  Google Scholar 

  6. Bartkiewicz, W.: Confidence intervals prediction for the short-term electrical load neural forecasting models. Elektrotechnik und Informationstechnik 117, 8–12 (2000)

    Google Scholar 

  7. Bielecki, A., Ba̧k, M.: Methodology of Neural Systems Development. In: Cader, A., Rutkowski, L., Tadeusiewicz, R., Żurada, J. (eds.) Artificial Intelligence and Soft Computing. Challanging Problems of Science - Computer Science, pp. 1–7. Academic Publishing House EXIT, Warszawa (2006)

    Google Scholar 

  8. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  9. Cottrell, M., Girard, B., Girard, Y., Muller, C., Rousset, P.: Daily electrical power curve: classification and forecasting using a Kohonen map. In: Sandoval, F., Mira, J. (eds.) IWANN 1995. LNCS, vol. 930, pp. 1107–1113. Springer, Heidelberg (1995)

    Google Scholar 

  10. Djukanowic, M., Babic, B., Sobajic, D.J., Pao, Y.H.: Unsupervised/supervised learning concept for 24-hour load forecasting. IEE Proceedings 4, 311–318 (1993)

    Google Scholar 

  11. Hsu, Y.Y., Ho, K.L.: Fuzzy expert systems: an application to short-term load forecasting. IEE Proceedings 6, 471–477 (1992)

    Google Scholar 

  12. Malko, J.: Certain Forecasting Problems in Electrical Power Engineering (in Polish). Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (1995)

    Google Scholar 

  13. Marciniak, A., Korbicz, J.: Modular neural networks (in Polish). In: Duch, W., Korbicz, J., Rutkowski, L., Tadeusiewicz, R. (eds.) Neural Networks, Biocybernetics and Biomedical Engineering, vol. 6, pp. 135–178. Academic Publishing House EXIT, Warszawa (2000)

    Google Scholar 

  14. Osowski, S.: Neural Networks - an Algorithmic Approach (in Polish). WNT, Warszawa (1996)

    Google Scholar 

  15. Osowski, S.: Neural Networks for Information Processing (in Polish). Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa (2000)

    Google Scholar 

  16. Osowski, S., Siwek, K.: Selforganizing neural networks for short term load forecasting in power system. In: Engineering Applications of Neural Networks, pp. 253–256 (1998)

    Google Scholar 

  17. Osowski, S., Siwek, K.: Regularization of neural networks for improved load forecasting in the power system. IEE Proc. Generation, Transmission and Distribution 149, 340–344 (2002)

    Article  Google Scholar 

  18. Osowski, S., Siwek, K., Tran Hoai, L.: Short term load forecasting using neural networks. In: Proc. III Ukrainian-Polish Workshop, Aluszta, Krym, pp. 72–77 (2001)

    Google Scholar 

  19. Park, D.C., El-Sharkawi, M.A., Marks, R.J., Atlas, R.E., Damborg, M.J.: Electric load forecasting using an artificial neural network. IEEE Transactions on Power Systems 6, 442–449 (1991)

    Article  Google Scholar 

  20. Peng, T.M., Hubele, N.F., Karady, G.G.: Advancement in the application of neural networks for short-term load forecasting. IEEE Transactions on Power Systems 7, 250–257 (1992)

    Article  Google Scholar 

  21. Siwek, K.: Load forecasting in an electrical power system using artificial neural networks. PhD Thesis (in Polish), Faculty of Electricity, Warsaw Technical University (2001)

    Google Scholar 

  22. Tresp, V.: Committee Machines. In: Hu, Y.H., Hwang, J.-N. (eds.) Handbook for Neural Network Signal Processing, CRC Press, Boca Raton (2001)

    Google Scholar 

  23. Weron, A., Weron, R.: Stock Market of Energy (in Polish). CIRE, Wrocław (2000)

    Google Scholar 

  24. Zieliński, J.S.: Intelligent Systems in Management - Theory and Practice (in Polish). PWN, Warszawa (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bartlomiej Beliczynski Andrzej Dzielinski Marcin Iwanowski Bernardete Ribeiro

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Ba̧k, M., Bielecki, A. (2007). Neural Systems for Short-Term Forecasting of Electric Power Load. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71629-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71629-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71590-0

  • Online ISBN: 978-3-540-71629-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics