Multi-objective Feature Selection with NSGA II | SpringerLink
Skip to main content

Multi-objective Feature Selection with NSGA II

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4431))

Included in the following conference series:

Abstract

This paper deals with the multi-objective definition of the feature selection problem for different pattern recognition domains. We use NSGA II the latest multi-objective algorithm developed for resolving problems of multi-objective aspects with more accuracy and a high convergence speed. We define the feature selection as a problem including two competing objectives and we try to find a set of optimal solutions so called Pareto-optimal solutions instead of a single optimal solution. The two competing objectives are the minimization of both the number of used features and the classification error using 1-NN classifier. We apply our method to five databases selected from the UCI repository and we report the results on these databases. We present the convergence of the NSGA II on different problems and discuss the behavior of NSGA II on these different contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dash, M., Liu, H.: Feature Selection for Classification. Intelligent Data Analysis 1, 131–156 (1997)

    Article  Google Scholar 

  2. Kim, G., Kim, S.: Feature Selection Using Genetic Algorithms for Handwritten character Recognition. In: 7th Int’l Workshop on Frontiers in Handwriting Recognition, Amsterdam, pp. 103–112 (2000)

    Google Scholar 

  3. Oh, I.-S., Lee, J.-S., Moon, B.-R.: Hybrid Genetic Algorithms for Feature Selection. IEEE Transaction on Pattern Analysis and Machine Intelligence 26(11) (2004)

    Google Scholar 

  4. Hamdani, M.T., Alimi, M.A., Karray, F.: Distributed Genetic Algorithm with Bi-Coded Chromosomes and a New Evaluation Function for Features Selection. In: Proc. IEEE Congress on Evolutionary Computation, pp. 2596–2603 (2006)

    Google Scholar 

  5. Cvetkovic, D., Parmee, I.C.: Preferences and their application in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation 6(1), 42–57 (2002)

    Article  Google Scholar 

  6. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

  7. Morita, M., Oliveira, L.S., Sabourin, R.: Unsupervised feature selection for ensemble of classifiers. In: Ninth International Workshop on Frontiers in Handwriting Recognition, IWFHR-9 2004, 26-29 Oct. 2004, pp. 81–86 (2004)

    Google Scholar 

  8. Morita, M., Sabourin, R., Bortolozzi, F., Suen, C.Y.: Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition. In: Proceedings of Seventh International Conference on Document Analysis and Recognition, 3-6 Aug. 2003, pp. 666–670 (2003)

    Google Scholar 

  9. Zio, E., Baraldi, P., Pedroni, N.: Selecting features nuclear transients classification by means of genetic algorithms. IEEE Transactions on Nuclear Science - Part 3 53(3), 1479–1493 (2006)

    Article  Google Scholar 

  10. Devogelaere, D., Rijckaert, M.: Scalars, a way to improve the multi-objective prediction of the GAdC-method. In: Proceedings of Sixth Brazilian Symposium on Neural Networks, 22-25 Nov. 2000, pp. 56–60 (2000)

    Google Scholar 

  11. Lac, H.C., Stacey, D.A.: Feature subset selection via multi-objective genetic algorithm. In: Proceedings of IEEE International Joint Conference on Neural Networks, IJCNN’05, 31 July - 4 Aug. 2005, vol. 3, pp. 1349–1354 (2005)

    Google Scholar 

  12. Oliveira, L.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: Feature selection using multi-objective genetic algorithms for handwritten digit recognition. In: Proceedings of 16th International Conference on Pattern Recognition, 2002, 11-15 Aug. 2002, vol. 1, pp. 568–571 (2002)

    Google Scholar 

  13. Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Journal of Evolutionary Computation 2(3), 221–248 (1998)

    Article  Google Scholar 

  14. Oliveira, L.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: Feature selection for ensembles: a hierarchical multi-objective genetic algorithm approach. In: Proceedings of Seventh International Conference on Document Analysis and Recognition, 3-6 Aug. 2003, pp. 676–680 (2003)

    Google Scholar 

  15. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  16. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. University of California, Department of Information and Computer Science, Irvine, CA (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bartlomiej Beliczynski Andrzej Dzielinski Marcin Iwanowski Bernardete Ribeiro

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Hamdani, T.M., Won, JM., Alimi, A.M., Karray, F. (2007). Multi-objective Feature Selection with NSGA II. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71618-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71618-1_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71589-4

  • Online ISBN: 978-3-540-71618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics