A Comprehensive View of Fitness Landscapes with Neutrality and Fitness Clouds | SpringerLink
Skip to main content

A Comprehensive View of Fitness Landscapes with Neutrality and Fitness Clouds

  • Conference paper
Genetic Programming (EuroGP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4445))

Included in the following conference series:

Abstract

We define a set of measures that capture some different aspects of neutrality in evolutionary algorithms fitness landscapes from a qualitative point of view. If considered all together, these measures offer a rather complete picture of the characteristics of fitness landscapes bound to neutrality and may be used as broad indicators of problem hardness. We compare the results returned by these measures with the ones of negative slope coefficient, a quantitative measure of problem hardness that has been recently defined and with success rate statistics on a well known genetic programming benchmark: the multiplexer problem. In order to efficaciously study the search space, we use a sampling technique that has recently been introduced and we show its suitability on this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear, K. (ed.) Advances in Genetic Programming, pp. 47–74. The MIT Press, Cambridge (1994)

    Google Scholar 

  2. Barnett, L.: Evolutionary Search on Fitness Landscapes with Neutral Networks. PhD thesis, University of Sussex (2003)

    Google Scholar 

  3. Collard, P., Clergue, M., Defoin-Platel, M.: Synthetic neutrality for artificial evolution. In: Artificial Evolution, pp. 254–265 (1999)

    Google Scholar 

  4. Collard, P., Verel, S., Clergue, M.: Local search heuristics: Fitness cloud versus fitness landscape. In: Mántaras, R.L.D., Saitta, L. (eds.) European Conference on Artificial Intelligence. ECAI04, Valence, Spain, pp. 973–974. IOS Press, Amsterdam (2004)

    Google Scholar 

  5. Collins, M.: Finding needles in haystacks is harder with neutrality. In: Beyer, H.-G., et al. (eds.) Proceedings of the 2005 conference on Genetic and evolutionary computation, vol. 2. GECCO 2005, Washington DC, USA, 25–29 June, pp. 1613–1618. ACM Press, New York (2005)

    Chapter  Google Scholar 

  6. Geard, N.: A comparison of neutral landscapes – nk, nkp and nkq. In: Congress on Evolutionary Computation (CEC’02), Honolulu, Hawaii, IEEE Press, Piscataway (2002)

    Google Scholar 

  7. Huynen, M.: Exploring phenotype space through neutral evolution. J. Mol. Evol. 43, 165–169 (1996)

    Article  Google Scholar 

  8. Koza, J.R.: Genetic Programming. The MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  9. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  10. Madras, N.: Lectures on Monte Carlo Methods. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  11. Reidys, C.M., Stadler, P.F.: Neutrality in fitness landscapes. Applied Mathematics and Computation 117(2–3), 321–350 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Schuster, P., Fontana, W., Stadler, P.F., Hofacker, I.L.: From sequences to shapes and back: a case study in RNA secondary structures. Proc. R. Soc. London B. 255, 279–284 (1994)

    Article  Google Scholar 

  13. Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani (eds.) Biological Evolution and Statistical Physics. Lecture Notes Physics, vol. 585, pp. 187–207. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Toussaint, M., Igel, C.: Neutrality: A necessity for self-adaptation. In: Congress on Evolutionary Computation (CEC’02), Honolulu, Hawaii, pp. 1354–1359. IEEE Press, Piscataway (2002)

    Google Scholar 

  15. Vanneschi, L.: Theory and Practice for Efficient Genetic Programming. Ph.D. thesis, Faculty of Sciences, University of Lausanne, Switzerland (2004)

    Google Scholar 

  16. Vanneschi, L., et al.: A quantitative study of neutrality in GP boolean landscapes. In: Keijzer, M., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, vol. 1. GECCO’06, pp. 895–902. ACM Press, New York (2006)

    Chapter  Google Scholar 

  17. Vanneschi, L., Tomassini, M., Collard, P., Clergue, M.: Fitness distance correlation in structural mutation genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 455–464. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Vanneschi, L., Tomassini, M., Collard, P., Vérel, S.: Negative slope coefficient. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 178–189. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Jones, D.F. (ed.) Proceedings of the Sixth International Congress on Genetics, vol.1, pp. 356–366 (1932)

    Google Scholar 

  20. Yu, T.: “Six degrees of separation” in boolean function networks with neutrality. In: Poli, R., et al. (eds.) GECCO 2004 Workshop Proceedings, Seattle, Washington, USA, 26-30 June (2004)

    Google Scholar 

  21. Yu, T., Miller, J.: Neutrality and the evolvability of boolean function landscape. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 204–217. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Yu, T., Miller, J.F.: Finding needles in haystacks is not hard with neutrality. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 13–25. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marc Ebner Michael O’Neill Anikó Ekárt Leonardo Vanneschi Anna Isabel Esparcia-Alcázar

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Vanneschi, L., Tomassini, M., Collard, P., Vérel, S., Pirola, Y., Mauri, G. (2007). A Comprehensive View of Fitness Landscapes with Neutrality and Fitness Clouds. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds) Genetic Programming. EuroGP 2007. Lecture Notes in Computer Science, vol 4445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71605-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71605-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71602-0

  • Online ISBN: 978-3-540-71605-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics