Abstract
We provide strong theoretical and experimental evidence that standard sub-tree crossover with uniform selection of crossover points pushes a population of a-ary GP trees towards a distribution of tree sizes of the form:
where n is the number of internal nodes in a tree and p a is a constant. This result generalises the result previously reported for the case a = 1.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blickle, T., Thiele, L.: A mathematical analysis of tournament selection. In: Eshelman, L.J. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms (ICGA’95), pp. 9–16. Morgan Kaufmann Publishers, San Francisco (1995)
Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary algorithms. Evolutionary Computation 4(4), 361–394 (1997)
Consul, P.C., Shenton, L.R.: Use of Lagrange Expansion for Generating Discrete Generalized Probability Distributions. SIAM Journal on Applied Mathematics 23(2), 239–248 (1972)
Geiringer, H.: On the probability theory of linkage in Mendelian heredity. Annals of Mathematical Statistics 15(1), 25–57 (1944)
Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Rawlins, G.J.E. (ed.) Foundations of Genetic Algorithms, Morgan Kaufmann Publishers, San Francisco (1991)
Good, I.J.: The Lagrange Distributions and Branching Processes. SIAM Journal on Applied Mathematics 28(2), 270–275 (1975)
Hilton, P., Pederson, J.: Catalan numbers, their generalization, and their uses. Mathematical Intelligencer 13, 64–75 (1991)
Janardan, K.: Weighted Lagrange Distributions and Their Characterizations. SIAM Journal on Applied Mathematics 47(2), 411–415 (1987)
Janardan, K., Rao, B.: Lagrange Distributions of the Second Kind and Weighted Distributions. SIAM Journal on Applied Mathematics 43(2), 302–313 (1983)
Luke, S.: Two fast tree-creation algorithms for genetic programming. IEEE Transactions on Evolutionary Computation 4(3), 274–283 (2000)
Motoki, T.: Calculating the expected loss of diversity of selection schemes. Evolutionary Computation 10(4), 397–422 (2002)
Poli, R., McPhee, N.F.: Exact schema theorems for GP with one-point and standard crossover operating on linear structures and their application to the study of the evolution of size. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 126–142. Springer, Heidelberg (2001)
Poli, R., McPhee, N.F.: General schema theory for genetic programming with subtree-swapping crossover: Part I. Evolutionary Computation 11(1), 53–66 (2003)
Poli, R., McPhee, N.F.: General schema theory for genetic programming with subtree-swapping crossover: Part II. Evolutionary Computation 11(2), 169–206 (2003)
Rowe, J.E., McPhee, N.F.: The effects of crossover and mutation operators on variable length linear structures. Technical Report CSRP-01-7, University of Birmingham, School of Computer Science (January 2001)
Vose, M.D.: The simple genetic algorithm: Foundations and theory. MIT Press, Cambridge (1999)
Watson, H.W., Galton, F.: On the Probability of the Extinction of Families. The Journal of the Anthropological Institute of Great Britain and Ireland 4, 138–144 (1875)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Poli, R., Langdon, W.B., Dignum, S. (2007). On the Limiting Distribution of Program Sizes in Tree-Based Genetic Programming. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds) Genetic Programming. EuroGP 2007. Lecture Notes in Computer Science, vol 4445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71605-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-71605-1_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71602-0
Online ISBN: 978-3-540-71605-1
eBook Packages: Computer ScienceComputer Science (R0)