Simulation of Laser Propagation in a Plasma with a Frequency Wave Equation | SpringerLink
Skip to main content

Simulation of Laser Propagation in a Plasma with a Frequency Wave Equation

  • Conference paper
High Performance Computing for Computational Science - VECPAR 2006 (VECPAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4395))

  • 769 Accesses

Abstract

The aim of this work is to perform numerical simulations of the propagation of a laser beam in a plasma. At each time step, one has to solve a Helmholtz equation with variable coefficients in a domain which may contain more than hundred millions of cells.

One uses an iterative method of Krylov type to deal with this system. At each inner iteration, the preconditioning amounts essentially to solve a linear system which corresponds to the same five-diagonal symmetric non-hermitian matrix. If n x and n y denote the number of discretization points in each spatial direction, this matrix is block tri-diagonal and the diagonal blocks are equal to a square matrix A of dimension n x which corresponds to the discretization form of a one-dimension wave operator. The corresponding linear system is solved by a block cyclic reduction method.

The crucial point is the product of a full square matrix Q of dimension n x by a set of n y vectors where Q corresponds to the basis of the n x eigenvectors of the tri-diagonal symmetric matrix A. We show some results which are obtained on a parallel architecture. Simulations with 200 millions of cells have run on 200 processors and the results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ballereau, P., et al.: Coupling Hydrodynamics with a Paraxial solver. To appear

    Google Scholar 

  2. Berenger, J.-P.: A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. J. Comp. Physics 114, 185–200 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Després, B.: Domain decomposition method and the Helmholtz problem. II. In: Second International Conference on Mathematical and Numerical Aspects of Wave Propagation, Newark, DE, SIAM, Philadelphia (1993)

    Google Scholar 

  4. Desroziers, S.: Modelisation de la propagation laser par résolution de l’équation d’Helmholtz. Ph. D. dissertation, University Paris VI (2006)

    Google Scholar 

  5. Dorr, M.R., Garaizar, F.X., Hittinger, J.A.: Simuation of laser-Plasma filamentation. J. Comp. Phys. 17, 233–263 (2002)

    Article  Google Scholar 

  6. Doumic, M., Golse, F., Sentis, R.: Propagation laser paraxiale en coordonnées obliques. Note C.R. Ac. Sciences, Paris, série I, t.336, pp. 23–28 (2003)

    Google Scholar 

  7. Hüller, S., et al.: Interaction of two neighboring laser beams. Phys. Plasmas 4, 2670–2680 (1997)

    Article  Google Scholar 

  8. Jourdren, H.: HERA hydrodynamics AMR Plateform for multiphysics simulation. In: Plewa, T., et al. (eds.) Proceedings of Chicago workshop on AMR methods, Springer, Berlin (2005)

    Google Scholar 

  9. Maximov, A.V., et al.: Modeling of stimulated Brillouin. Phys. Plasmaa 11, 2994–3000 (2004)

    Article  Google Scholar 

  10. Lions, P.-L.: On the Schwarz alternating method, III. In: Chan, et al. (eds.) Third International Symposium on Domain Decomposition Methods for PDE, SIAM, Philadelphia (1990)

    Google Scholar 

  11. Parlett, B.N.: Acta Numerica, pp. 459–491 (1995)

    Google Scholar 

  12. Rossi, T., Toivanen, J.: A parallel fast direct solver for block tridiagonal systems with separable matrices. SIAM J. Sci. Comput. 20, 1778–1796 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sentis, R.: Mathematical Models for Laser-Plasma Interaction. ESAIM: Math. Modelling and Num. Analysis 39, 275–318 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michel Daydé José M. L. M. Palma Álvaro L. G. A. Coutinho Esther Pacitti João Correia Lopes

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Sentis, R., Desroziers, S., Nataf, F. (2007). Simulation of Laser Propagation in a Plasma with a Frequency Wave Equation. In: Daydé, M., Palma, J.M.L.M., Coutinho, Á.L.G.A., Pacitti, E., Lopes, J.C. (eds) High Performance Computing for Computational Science - VECPAR 2006. VECPAR 2006. Lecture Notes in Computer Science, vol 4395. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71351-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71351-7_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71350-0

  • Online ISBN: 978-3-540-71351-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics