Abstract
The aim of this work is to perform numerical simulations of the propagation of a laser beam in a plasma. At each time step, one has to solve a Helmholtz equation with variable coefficients in a domain which may contain more than hundred millions of cells.
One uses an iterative method of Krylov type to deal with this system. At each inner iteration, the preconditioning amounts essentially to solve a linear system which corresponds to the same five-diagonal symmetric non-hermitian matrix. If n x and n y denote the number of discretization points in each spatial direction, this matrix is block tri-diagonal and the diagonal blocks are equal to a square matrix A of dimension n x which corresponds to the discretization form of a one-dimension wave operator. The corresponding linear system is solved by a block cyclic reduction method.
The crucial point is the product of a full square matrix Q of dimension n x by a set of n y vectors where Q corresponds to the basis of the n x eigenvectors of the tri-diagonal symmetric matrix A. We show some results which are obtained on a parallel architecture. Simulations with 200 millions of cells have run on 200 processors and the results are presented.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ballereau, P., et al.: Coupling Hydrodynamics with a Paraxial solver. To appear
Berenger, J.-P.: A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. J. Comp. Physics 114, 185–200 (1994)
Després, B.: Domain decomposition method and the Helmholtz problem. II. In: Second International Conference on Mathematical and Numerical Aspects of Wave Propagation, Newark, DE, SIAM, Philadelphia (1993)
Desroziers, S.: Modelisation de la propagation laser par résolution de l’équation d’Helmholtz. Ph. D. dissertation, University Paris VI (2006)
Dorr, M.R., Garaizar, F.X., Hittinger, J.A.: Simuation of laser-Plasma filamentation. J. Comp. Phys. 17, 233–263 (2002)
Doumic, M., Golse, F., Sentis, R.: Propagation laser paraxiale en coordonnées obliques. Note C.R. Ac. Sciences, Paris, série I, t.336, pp. 23–28 (2003)
Hüller, S., et al.: Interaction of two neighboring laser beams. Phys. Plasmas 4, 2670–2680 (1997)
Jourdren, H.: HERA hydrodynamics AMR Plateform for multiphysics simulation. In: Plewa, T., et al. (eds.) Proceedings of Chicago workshop on AMR methods, Springer, Berlin (2005)
Maximov, A.V., et al.: Modeling of stimulated Brillouin. Phys. Plasmaa 11, 2994–3000 (2004)
Lions, P.-L.: On the Schwarz alternating method, III. In: Chan, et al. (eds.) Third International Symposium on Domain Decomposition Methods for PDE, SIAM, Philadelphia (1990)
Parlett, B.N.: Acta Numerica, pp. 459–491 (1995)
Rossi, T., Toivanen, J.: A parallel fast direct solver for block tridiagonal systems with separable matrices. SIAM J. Sci. Comput. 20, 1778–1796 (1999)
Sentis, R.: Mathematical Models for Laser-Plasma Interaction. ESAIM: Math. Modelling and Num. Analysis 39, 275–318 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Sentis, R., Desroziers, S., Nataf, F. (2007). Simulation of Laser Propagation in a Plasma with a Frequency Wave Equation. In: Daydé, M., Palma, J.M.L.M., Coutinho, Á.L.G.A., Pacitti, E., Lopes, J.C. (eds) High Performance Computing for Computational Science - VECPAR 2006. VECPAR 2006. Lecture Notes in Computer Science, vol 4395. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71351-7_40
Download citation
DOI: https://doi.org/10.1007/978-3-540-71351-7_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71350-0
Online ISBN: 978-3-540-71351-7
eBook Packages: Computer ScienceComputer Science (R0)