Verifying a Semantic βη-Conversion Test for Martin-Löf Type Theory | SpringerLink
Skip to main content

Verifying a Semantic βη-Conversion Test for Martin-Löf Type Theory

  • Conference paper
Mathematics of Program Construction (MPC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5133))

Included in the following conference series:

Abstract

Type-checking algorithms for dependent type theories often rely on the interpretation of terms in some semantic domain of values when checking equalities. Here we analyze a version of Coquand’s algorithm for checking the βη-equality of such semantic values in a theory with a predicative universe hierarchy and large elimination rules. Although this algorithm does not rely on normalization by evaluation explicitly, we show that similar ideas can be employed for its verification. In particular, our proof uses the new notions of contextual reification and strong semantic equality.

The algorithm is part of a bi-directional type checking algorithm which checks whether a normal term has a certain semantic type, a technique used in the proof assistants Agda and Epigram. We work with an abstract notion of semantic domain in order to accommodate a variety of possible implementation techniques, such as normal forms, weak head normal forms, closures, and compiled code. Our aim is to get closer than previous work to verifying the type-checking algorithms which are actually used in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abel, A., Aehlig, K., Dybjer, P.: Normalization by evaluation for Martin-Löf type theory with one universe. In: Fiore, M. (ed.) Proc. of the 23rd Conf. on the Mathematical Foundations of Programming Semantics (MFPS XXIII). Electr. Notes in Theor. Comp. Sci, vol. 173, pp. 17–39. Elsevier, Amsterdam (2007)

    Google Scholar 

  2. Abel, A., Coquand, T.: Untyped algorithmic equality for Martin-Löf’s logical framework with surjective pairs. Fundam. Inform. 77(4), 345–395 (2005); TLCA 2005 special issue

    MathSciNet  Google Scholar 

  3. Altenkirch, T., Chapman, J.: Big step normalisation. Draft, available on the authors’ homepages (2008)

    Google Scholar 

  4. Abel, A., Coquand, T., Dybjer, P.: Normalization by evaluation for Martin-Löf Type Theory with typed equality judgements. In: Proc. of the 22nd IEEE Symp. on Logic in Computer Science (LICS 2007), pp. 3–12. IEEE Computer Soc. Press, Los Alamitos (2007)

    Google Scholar 

  5. Abel, A., Coquand, T., Dybjer, P.: A semantic βη-equality algorithm for Martin-Löf Type Theory (extended version). Technical report, Ludwig-Maximilians-University Munich (2008), http://www.tcs.ifi.lmu.de/~abel/semEqTR.pdf

  6. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. North Holland, Amsterdam (1984)

    MATH  Google Scholar 

  7. Bruce, K.B., Longo, G.: On combinatory algebras and their expansions. Theor. Comput. Sci. 31, 31–40 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Berger, U., Schwichtenberg, H.: An inverse to the evaluation functional for typed λ-calculus. In: Proceedings of the 6th Annual IEEE Symposium on Logic in Computer Science, Amsterdam, pp. 203–211 (July 1991)

    Google Scholar 

  9. Chapman, J., Altenkirch, T., McBride, C.: Epigram reloaded: a standalone typechecker for ETT. In: van Eekelen, M.C.J.D. (ed.) Revised Selected Papers from the 6th Symp. on Trends in Functional Programming, TFP 2005, Trends in Functional Programming, Intellect, vol. 6, pp. 79–94 (2007)

    Google Scholar 

  10. Coquand, C.: From semantics to rules: A machine assisted analysis. In: Meinke, K., Börger, E., Gurevich, Y. (eds.) Proc. of the 7th Wksh. on Computer Science Logic, CSL 1993. LNCS, vol. 832, pp. 91–105. Springer, Heidelberg (1994)

    Google Scholar 

  11. Coquand, T.: An algorithm for type-checking dependent types. In: Mathematics of Program Construction. Selected Papers from the Third International Conference on the Mathematics of Program Construction, Kloster Irsee, Germany, July 17–21, 1995. Science of Computer Programming, vol. 26, pp. 167–177. Elsevier Science, Amsterdam (1996)

    Google Scholar 

  12. Coquand, T., Pollack, R., Takeyama, M.: A logical framework with dependently typed records. Fundam. Inform. 65(1-2), 113–134 (2005)

    MATH  MathSciNet  Google Scholar 

  13. Danvy, O.: Type-directed partial evaluation. In: Hatcliff, J., Mogensen, T.Æ., Thiemann, P. (eds.) Partial Evaluation – Practice and Theory, DIKU 1998 International Summer School, Copenhagen, Denmark, June 29 - July 10, 1998. LNCS, vol. 1706, pp. 367–411. Springer, Heidelberg (1999)

    Google Scholar 

  14. Dybjer, P.: Internal type theory. In: Berardi, S., Coppo, M. (eds.) Types for Proofs and Programs (TYPES 1995). LNCS, vol. 1158, pp. 120–134. Springer, Heidelberg (1996)

    Google Scholar 

  15. Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions in type theory. The Journal of Symbolic Logic 65(2), 525–549 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: Proc. of the 7th ACM SIGPLAN Int. Conf. on Functional Programming (ICFP 2002). SIGPLAN Notices, vol. 37, pp. 235–246. ACM Press, New York (2002)

    Chapter  Google Scholar 

  17. H. Goguen.: A Typed Operational Semantics for Type Theory. PhD thesis, University of Edinburgh. Available as LFCS Report ECS-LFCS-94-304 (August 1994)

    Google Scholar 

  18. Harper, R., Pfenning, F.: On equivalence and canonical forms in the LF type theory. ACM Transactions on Computational Logic 6(1), 61–101 (2005)

    Article  MathSciNet  Google Scholar 

  19. INRIA. The Coq Proof Assistant, Version 8.1. INRIA (2007), http://coq.inria.fr/

  20. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a proof assistant. In: Morrisett, J.G., Jones, S.L.P. (eds.) Proc. of the 33rd ACM Symp. on Principles of Programming Languages, POPL 2006, pp. 42–54. ACM Press, New York (2006)

    Google Scholar 

  21. Martin-Löf, P.: About models for intuitionistic type theories and the notion of definitional equality. In: Kanger, S. (ed.) Proceedings of the 3rd Scandinavian Logic Symposium, pp. 81–109 (1975)

    Google Scholar 

  22. P. Martin-Löf.: Substitution calculus. Lecture in Göteborg (November 1992) (unpublished)

    Google Scholar 

  23. Norell, U.: Towards a practical programming language based on dependent type theory. PhD thesis, Department of Computer Science and Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden (September 2007)

    Google Scholar 

  24. Pitts, A.M.: Alpha-structural recursion and induction. Journal of the ACM 53, 459–506 (2006)

    Article  MathSciNet  Google Scholar 

  25. Pollack, R.: Closure under alpha-conversion. In: Barendregt, H., Nipkow, T. (eds.) Types for Proofs and Programs: International Workshop. LNCS, vol. 806, pp. 313–332. Springer, Heidelberg (1994)

    Google Scholar 

  26. Pfenning, F., Schürmann, C.: System Description: Twelf - A Meta-Logical Framework for Deductive Systems. In: Ganzinger, H. (ed.) Proceedings of the 16th International Conference on Automated Deduction (CADE-16). LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

    Google Scholar 

  27. Pierce, B.C., Turner, D.N.: Local type inference. In: POPL 98: The 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, California (1998)

    Google Scholar 

  28. Shinwell, M.: The Fresh Approach: Functional Programming with Names and Binders. PhD thesis, University of Cambridge (2005)

    Google Scholar 

  29. Schürmann, C., Sarnat, J.: Structural logical relations. In: Pfenning, F. (ed.) Proc. of the 23nd IEEE Symp. on Logic in Computer Science (LICS 2008) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Philippe Audebaud Christine Paulin-Mohring

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abel, A., Coquand, T., Dybjer, P. (2008). Verifying a Semantic βη-Conversion Test for Martin-Löf Type Theory. In: Audebaud, P., Paulin-Mohring, C. (eds) Mathematics of Program Construction. MPC 2008. Lecture Notes in Computer Science, vol 5133. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70594-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70594-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70593-2

  • Online ISBN: 978-3-540-70594-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics