Linear Logical Algorithms | SpringerLink
Skip to main content

Linear Logical Algorithms

  • Conference paper
Automata, Languages and Programming (ICALP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5126))

Included in the following conference series:

Abstract

Bottom-up logic programming can be used to declaratively specify many algorithms in a succinct and natural way, and McAllester and Ganzinger have shown that it is possible to define a cost semantics that enables reasoning about the running time of algorithms written as inference rules. Previous work with the programming language Lollimon demonstrates the expressive power of logic programming with linear logic in describing algorithms that have imperative elements or that must repeatedly make mutually exclusive choices. In this paper, we identify a bottom-up logic programming language based on linear logic that is amenable to efficient execution and describe a novel cost semantics that can be used for complexity analysis of algorithms expressed in linear logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. McAllester, D.A.: On the complexity analysis of static analyses. J. ACM 49(4), 512–537 (2002)

    Article  MathSciNet  Google Scholar 

  2. Nielson, F., Nielson, H.R., Seidl, H.: Automatic complexity analysis. In: Le Métayer, D. (ed.) ESOP 2002 and ETAPS 2002. LNCS, vol. 2305, pp. 243–261. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Liu, Y.A., Stoller, S.D.: From Datalog rules to efficient programs with time and space guarantees. In: PPDP 2003: Proceedings of the 5th ACM SIGPLAN international conference on Principles and practice of declaritive programming, pp. 172–183. ACM, New York (2003)

    Chapter  Google Scholar 

  4. Ganzinger, H., McAllester, D.A.: A new meta-complexity theorem for bottom-up logic programs. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 514–528. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Ganzinger, H., McAllester, D.A.: Logical algorithms. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 209–223. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Greco, S., Zaniolo, C.: Greedy algorithms in Datalog. Theory Pract. Log. Program. 1(4), 381–407 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chang, B.Y.E., Chaudhuri, K., Pfenning, F.: A judgmental analysis of linear logic. Technical Report CMU-CS-03-131, Carnegie Mellon University (April 2003)

    Google Scholar 

  8. Nomikos, C., Rondogiannis, P., Gergatsoulis, M.: Temporal stratification tests for linear and branching-time deductive databases. Theor. Comput. Sci. 342(2-3), 382–415 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Arni, F., Ong, K., Tsur, S., Wang, H., Zaniolo, C.: The Deductive Database System LDL++. Theory Pract. Log. Program. 3(1), 61–94 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Pfenning, F.: Linear logical algorithms. In: Workshop on Programming Logics in memory of Harald Ganzinger, Saarbrücken (June 2005) (invited talk)

    Google Scholar 

  11. López, P., Pfenning, F., Polakow, J., Watkins, K.: Monadic concurrent linear logic programming. In: PPDP 2005: Proceedings of the 7th ACM SIGPLAN International Conference on Principles and Practice of Declarative Programming, pp. 35–46. ACM, New York (2005)

    Chapter  Google Scholar 

  12. Chaudhuri, K.: The Focused Inverse Method for Linear Logic. PhD thesis, Carnegie Mellon University (December 2006)

    Google Scholar 

  13. Chaudhuri, K., Pfenning, F., Price, G.: A Logical Characterization of Forward and Backward Chaining in the Inverse Method. In: Automated Reasoning, vol. 4130, pp. 97–111. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Simmons, R.J., Pfenning, F.: Linear Logical Algorithms. Technical Report CMU-CS-08-104, Carnegie Mellon University (May 2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luca Aceto Ivan Damgård Leslie Ann Goldberg Magnús M. Halldórsson Anna Ingólfsdóttir Igor Walukiewicz

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Simmons, R.J., Pfenning, F. (2008). Linear Logical Algorithms. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70583-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70583-3_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70582-6

  • Online ISBN: 978-3-540-70583-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics