Text Classification by Relearning and Ensemble Computation | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 149))

Abstract

The k-nearest neighbor(k-NN) is improved by applying the distance functions with relearning and ensemble computations to classify text data with the higher accuracy values. The proposed relearning and combining ensemble computations are an effective technique for improving accuracy. We develop a new approach to combine kNN classifier based on weighted distance function with relearning and ensemble computations. The combining algorithm shows higher generalization accuracy, compared to other conventional algorithms. First, to improve classification accuracy, a relearning method with genetic algorithm is developed. Second, ensemble computations are followed by the relearning. Experiments have been conducted on some benchmark datasets from the UCI Machine Learning Repository.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wilson, D.R., Martinez, T.R.: An Integrated Instance-Based Learning Algorithm. Computer Intelligence 16(1), 1–28 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bao, Y., Tsuchiya, E., Ishii, N., Du, X.: Classification by Instance-Based Learning Algorithm. In: Gallagher, M., Hogan, J.P., Maire, F. (eds.) IDEAL 2005. LNCS, vol. 3578, pp. 133–140. Springer, Heidelberg (2005)

    Google Scholar 

  3. Bao, Y., Ishii, N., Du, X.: A Tolerant Instance-Based Learning Algorithm. In: Dosch, W., Lee, R.Y., Wu, C. (eds.) SERA 2004. LNCS, vol. 3647, pp. 14–22. Springer, Heidelberg (2006)

    Google Scholar 

  4. Wilson, D.R., Martinez, T.R.: Improved Heterogeneous Distance Functions. Journal of Artificial Intelligence Research 6, 3–21 (1997)

    MathSciNet  Google Scholar 

  5. Witten, I.H., Frank, E.: Data Mining Practical Learning Tools and Techniques. Morgan Kaufman, USA (2005)

    MATH  Google Scholar 

  6. Bay, S.D.: Nearest neighbor classification from multiple feature subsets. Intelligent Data Analysis 3, 191–209 (1999)

    Article  Google Scholar 

  7. Kaneko, S., Igarashi, S.: Combining Multiple k-Neighbor Classifiers Using Feature Combinations. IEICE TRANSACTIONS on Information and Systems l.2(3), 23–31 (2000)

    Google Scholar 

  8. Merz, C.J., Murphy, P.M.: UCI Repository of Machine Learning Databases, Irvine, CA: University of California Irvine. In: Department of Information and Computer Science (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  9. Pawlak, Z.: “Rough Sets”. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  10. Pawlak, Z.: Decision Networks. Rough Sets and Current Trends in Computing 2004. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 1–7. Springer, Heidelberg (2004)

    Google Scholar 

  11. Yamada, T., Yamashita, K., Ishii, N.: Text Classification by Combining Different Distance Functions with Weights. In: Proc. of SNPD 2006, pp. 85–90. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roger Lee

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ishii, N., Yamada, T., Bao, Y. (2008). Text Classification by Relearning and Ensemble Computation. In: Lee, R. (eds) Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. Studies in Computational Intelligence, vol 149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70560-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70560-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70559-8

  • Online ISBN: 978-3-540-70560-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics