Abstract
We describe a hierarchical approach for recognizing continuous hand gestures. It consists of hierarchical nonlinear dimensionality reduction based feature extraction and Hierarchical Conditional Random Field (Hierarchical CRF) based motion modeling. Articulated hands can be decomposed into several hand parts and we explore the underlying structures of articulated action spaces for both the hand and hand parts using Hierarchical Gaussian Process Latent Variable Model (HGPLVM). In this hierarchical latent variable space, we propose a Hierarchical CRF, which can simultaneously capture the extrinsic class dynamics and learn the relationship between motions of hand parts and class labels, to model the hand motions. Approving recognition performance is obtained on our user-defined hand gesture dataset.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wu, Y., Huang, T.S.: Vision-based gesture recognition: A review. In: Braffort, A., Gibet, S., Teil, D., Gherbi, R., Richardson, J. (eds.) GW 1999. LNCS (LNAI), vol. 1739, p. 103. Springer, Heidelberg (2000)
Lv, F., Nevatia, R.: Single View Human Action Recognition using Key Pose Matching and Viterbi Path Searching. In: CVPR (2007)
Efros, A., Berg, A., Mori, G., Malik, J.: Recognizing action at a distance. In: ICCV (2003)
Bobick, A., Davis, J.: The recognition of human movement using temporal templates. PAMI 23(3), 257–267 (2001)
Nguyen, N., Phung, D., Venkatesh, S., Bui, H.: Learning and detecting activities from movement trajectories using the hierarchical hidden Markov models. In: CVPR (2005)
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML (2001)
Sutton, C., Rohanimanesh, K., McCallum, A.: Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data. In: ICML (2004)
Sminchisescu, C., Kanaujia, A., Li, Z., Metaxas, D.: Conditional models for contextual human motion recognition. In: ICCV (2005)
Wang, S., Quattoni, A., Morency, L., Demirdjian, D., Darrell, T.: Hidden conditional random fields for gesture recognition. In: CVPR (2006)
Wang, L., Suter, D.: Recognizing Human Activities from Silhouettes: Motion Subspace and Factorial Discriminative Graphical Model. In: CVPR (2007)
Morency, L., Quattoni, A., Darrell, T.: Latent-Dynamic Discriminative Models for Continuous Gesture Recognition. In: CVPR (2007)
Lawrence, N.D.: Gaussian Process Latent Variable Models for Visualization of High dimensional Data. In: NIPS (2004)
Lawrence, N.D.: Hierarchical Gaussian Process Latent Variable Models. In: Proceedings of the 23rd International Conference on Machine Learning (ICML 2007), Corvallis, USA (2007)
Han, L., Wu, X., Liang, W., Jia, D.: Tracking 3D Hand on a learned Smooth Space. In: CNCC (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Han, L., Liang, W. (2008). Continuous Hand Gesture Recognition in the Learned Hierarchical Latent Variable Space. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2008. Lecture Notes in Computer Science, vol 5098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70517-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-70517-8_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70516-1
Online ISBN: 978-3-540-70517-8
eBook Packages: Computer ScienceComputer Science (R0)