Continuous Hand Gesture Recognition in the Learned Hierarchical Latent Variable Space | SpringerLink
Skip to main content

Continuous Hand Gesture Recognition in the Learned Hierarchical Latent Variable Space

  • Conference paper
Articulated Motion and Deformable Objects (AMDO 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5098))

Included in the following conference series:

  • 1169 Accesses

Abstract

We describe a hierarchical approach for recognizing continuous hand gestures. It consists of hierarchical nonlinear dimensionality reduction based feature extraction and Hierarchical Conditional Random Field (Hierarchical CRF) based motion modeling. Articulated hands can be decomposed into several hand parts and we explore the underlying structures of articulated action spaces for both the hand and hand parts using Hierarchical Gaussian Process Latent Variable Model (HGPLVM). In this hierarchical latent variable space, we propose a Hierarchical CRF, which can simultaneously capture the extrinsic class dynamics and learn the relationship between motions of hand parts and class labels, to model the hand motions. Approving recognition performance is obtained on our user-defined hand gesture dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wu, Y., Huang, T.S.: Vision-based gesture recognition: A review. In: Braffort, A., Gibet, S., Teil, D., Gherbi, R., Richardson, J. (eds.) GW 1999. LNCS (LNAI), vol. 1739, p. 103. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Lv, F., Nevatia, R.: Single View Human Action Recognition using Key Pose Matching and Viterbi Path Searching. In: CVPR (2007)

    Google Scholar 

  3. Efros, A., Berg, A., Mori, G., Malik, J.: Recognizing action at a distance. In: ICCV (2003)

    Google Scholar 

  4. Bobick, A., Davis, J.: The recognition of human movement using temporal templates. PAMI 23(3), 257–267 (2001)

    Google Scholar 

  5. Nguyen, N., Phung, D., Venkatesh, S., Bui, H.: Learning and detecting activities from movement trajectories using the hierarchical hidden Markov models. In: CVPR (2005)

    Google Scholar 

  6. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: ICML (2001)

    Google Scholar 

  7. Sutton, C., Rohanimanesh, K., McCallum, A.: Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data. In: ICML (2004)

    Google Scholar 

  8. Sminchisescu, C., Kanaujia, A., Li, Z., Metaxas, D.: Conditional models for contextual human motion recognition. In: ICCV (2005)

    Google Scholar 

  9. Wang, S., Quattoni, A., Morency, L., Demirdjian, D., Darrell, T.: Hidden conditional random fields for gesture recognition. In: CVPR (2006)

    Google Scholar 

  10. Wang, L., Suter, D.: Recognizing Human Activities from Silhouettes: Motion Subspace and Factorial Discriminative Graphical Model. In: CVPR (2007)

    Google Scholar 

  11. Morency, L., Quattoni, A., Darrell, T.: Latent-Dynamic Discriminative Models for Continuous Gesture Recognition. In: CVPR (2007)

    Google Scholar 

  12. Lawrence, N.D.: Gaussian Process Latent Variable Models for Visualization of High dimensional Data. In: NIPS (2004)

    Google Scholar 

  13. Lawrence, N.D.: Hierarchical Gaussian Process Latent Variable Models. In: Proceedings of the 23rd International Conference on Machine Learning (ICML 2007), Corvallis, USA (2007)

    Google Scholar 

  14. Han, L., Wu, X., Liang, W., Jia, D.: Tracking 3D Hand on a learned Smooth Space. In: CNCC (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco J. Perales Robert B. Fisher

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, L., Liang, W. (2008). Continuous Hand Gesture Recognition in the Learned Hierarchical Latent Variable Space. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2008. Lecture Notes in Computer Science, vol 5098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70517-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70517-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70516-1

  • Online ISBN: 978-3-540-70517-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics