Abstract
We describe a method for extending an inference process for propositional probability logic to predicate probability logic in the case where the language in purely unary and show that the method is well defined for the Minimum Distance and CM ∞ inference processes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bacchus, F., Grove, A.J., Halpern, J.Y., Koller, D.: Generating new beliefs from old. In: Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence (UAI 1994), pp. 37–45 (1994)
Bacchus, F., Grove, A.J., Halpern, J.Y., Koller, D.: From statistical knowledge to degrees of belief. Artificial Intelligence 87, 75–143 (1996)
Barnett, O.W., Paris, J.B.: Maximum Entropy inference with qualified knowledge. Logic Journal of the IGPL 16(1), 85–98 (2008)
Carnap, R.: A basic system of inductive logic. In: Jeffrey, R.C. (ed.) Studies in Inductive Logic and Probability, vol. II, pp. 7–155. University of California Press (1980)
Chang, C.C., Keisler, H.J.: Model Theory. Studies in Logic and the Foundations of Mathematics, vol. 73. North Holland, Amsterdam (1973)
Dimitracopoulos, C., Paris, J.B., Vencovská, A., Wilmers, G.M.: A multivariate probability distribution based on the propositional calculus, Manchester Centre for Pure Mathematics, University of Manchester, UK, preprint number 1999/6, http://www.maths.manchester.ac.uk/~jeff/
Fitelson, B.: Inductive Logic, http://fitelson.org/il.pdf
Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)
Grove, A.J., Halpern, J.Y., Koller, D.: Random Worlds and Maximum Entropy. Journal of Artificial Intelligence Research 2, 33–88 (1994)
Grove, A.J., Halpern, J.Y., Koller, D.: Asymptotic conditional probabilities: the unary case. SIAM J. of Computing 25(1), 1–51 (1996)
Grove, A.J., Halpern, J.Y., Koller, D.: Asymptotic conditional probabilities: the non-unary case. J. Symbolic Logic 61(1), 250–276 (1996)
Hintikka, J., Niiniluoto, I.: An axiomatic foundation for the logic of inductive generalization. In: Jeffrey, R.C. (ed.) Studies in Inductive Logic and Probability, vol. II, pp. 158–181. University of California Press, Berkeley, Los Angeles (1980)
Johnson, W.E.: Probability: The deductive and inductive problems. Mind 41(164), 409–423 (1932)
Kuipers, T.A.F.: A survey of inductive systems. In: Jeffrey, R.C. (ed.) Studies in Inductive Logic and Probability, vol. II, pp. 183–192. University of California Press, Berkeley, Los Angeles (1980)
Kuipers, T.A.F.: On the generalization of the continuum of inductive methods to universal hypotheses. Synthese 37, 255–284 (1978)
Paris, J.B.: A short course on Inductive Logic. In: JAIST 2007 (2007), http://www.maths.manchester.ac.uk/~jeff
Paris, J.B.: The Uncertain Reasoner’s Companion. Cambridge University Press, Cambridge (1994)
Paris, J.B.: On the distribution of probability functions in the natural world. In: Hendricks, V.F., Pedersen, S.A., Jøgensen, K.F. (eds.) Probability Theory: Philosophy, Recent History and Relations to Science. Synthese Library, vol. 297, pp. 125–145 (2001)
Paris, J.B.: Vencovská, On the applicability of maximum entropy to inexact reasoning. International Journal of Approximate Reasoning 3(1), 1–34 (1989)
Paris, J.B., Vencovská: A note on the inevitability of maximum entropy. International Journal of Approximate Reasoning 4(3), 183–224 (1990)
Paris, J.B., Vencovská: In defense of the maximum entropy inference process. International Journal of Approximate Reasoning 17(1), 77–103 (1997)
Paris, J.B., Vencovská, A.: Common sense and stochastic independence. In: Corfield, D., Williamson, J. (eds.) Foundations of Bayesianism, pp. 203–240. Kluwer Academic Press, Dordrecht (2001)
Rad, S.R.: PhD Thesis, Manchester University, Manchester, UK (to appear)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Paris, J.B., Rad, S.R. (2008). Inference Processes for Quantified Predicate Knowledge. In: Hodges, W., de Queiroz, R. (eds) Logic, Language, Information and Computation. WoLLIC 2008. Lecture Notes in Computer Science(), vol 5110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69937-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-69937-8_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69936-1
Online ISBN: 978-3-540-69937-8
eBook Packages: Computer ScienceComputer Science (R0)