Abstract
The aim of this paper is to introduce the notion of interval additive generators of interval t-norms as interval representations of additive generators of t-norms, considering both the correctness and the optimality criteria, in order to provide a more systematic methodology for the selection of interval t-norms in the various applications. We prove that interval additive generators satisfy the main properties of punctual additive generators discussed in the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zadeh, L.A.: Fuzzy sets. Information and Control, 338–353 (1965)
Mitra, S., Pal, S.K.: Fuzzy sets in pattern recognition and machine intelligence. Fuzzy Sets and Systems 156, 381–386 (2005)
Chen, G., Pham, T.T.: Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems. CRC Press, Boca Raton (2001)
Carlsson, C., Fuller, R.: Fuzzy Reasoning in Decision Making and Optimization. Physicva-Verlag, Springer, Heidelberg (2002)
Siler, W., Buckley, J.J.: Fuzzy Expert Systems and Fuzzy Reasoning. John Wiley, NY (2004)
Bedregal, B.C., Costa, A.C.R., Dimuro, G.P.: Fuzzy rule-based hand gesture recognition. In: Bramer, M. (ed.) Artificial Intelligence in Theory And Practice. IFIP Series, vol. 271, pp. 285–294. Springer, Boston (2006)
Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, NY (1983)
Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publisher, Dordrecht (1994)
Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Boston (1998)
Klement, E., Mesiar, R., Pap, E.: Triangular norms. position paper I: basic analytical and algebraic properties. Fuzzy Sets and Systems 143(1), 5–26 (2004)
Klement, E., Mesiar, R., Pap, E.: Triangular norms. position paper II: general constructions and parameterized families. Fuzzy Sets and Systems 145(3), 411–438 (2004)
Klement, E., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht (2000)
Klement, E., Navara, M.: A survey on different triangular norm-based fuzzy logics. Fuzzy Sets and Systems 101, 241–251 (1999)
Klement, E.P., Mesiar, R., Pap, E.: Triangular norms: Basic notions and properties. In: Klement, E.P., Mesiar, R. (eds.) Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, pp. 17–60. Elsevier, Amsterdam (2005)
Mesiarová, A.: Generators of triangular norms. In: Klement, E.P., Mesiar, R. (eds.) Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, pp. 95–111. Elsevier, Amsterdam (2005)
Leventides, J., Bounas, A.: An approach to the selection of fuzzy connectives in terms of their additive generators. Fuzzy Sets and Systems 126, 219–224 (2002)
Mas, M., Monserrat, M., Torrens, J.: Two types of implications derived from uninorms. Fuzzy Sets and Systems 158(3), 2612–2626 (2007)
Faucett, W.M.: Compact semigroups irreducibly connected between two idempotents. Proc. American Mathematics Society 6, 741–747 (1955)
Klement, E.P., Mesiar, R., Pap, E.: Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Sets and Systems 104, 3–13 (1999)
Ling, C.H.: Representation of associative functions. Publ. Math. Debrecen 12, 189–212 (1965)
Mesiarová, A.: H-transformation of t-norms. Information Sciences 176, 1531–1545 (2006)
Mostert, P.S., Shields, A.L.: On the structure of semigroups on a compact manifold with boundary. Ann. Math. 65, 117–143 (1957)
Viceník, P.: Additive generators of associative functions. Fuzzy Sets and Systems 153, 137–160 (2005)
Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)
Moore, R.: Methods and Applications of Interval Analysis. SIAM, Philadelphia (1979)
Cornelis, G., Deschrijver, G., Kerre, E.: Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. Int. Journal Approximate Reason 35, 55–95 (2004)
Deschrijver, G., Kerre, E.E.: Implicators based on binary aggregation operators in interval-valued fuzzy set theory. Fuzzy Sets and Systems 153(2), 229–248 (2005)
Dubois, D., Prade, H.: Interval-valued fuzzy sets, possibility theory and imprecise probability. In: Proc. Intl. Conf. Fuzzy Logic and Technology, Barcelona, pp. 314–319 (2005)
Gehrke, M., Walker, C., Walker, E.: Some comments on interval valued fuzzy sets. Intl. Journal of Intelligent Systems 11, 751–759 (1996)
Gorzalczany, M.B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets and Systems 21(1), 1–17 (1987)
Grattan-Guiness, I.: Fuzzy membership mapped onto interval and many-valued quantities. Z. Math. Logik. Grundladen Math. 22, 149–160 (1975)
Moore, R., Lodwick, W.: Interval analysis and fuzzy set theory. Fuzzy Sets and Systems 135(1), 5–9 (2003)
Nguyen, H., Kreinovich, V., Zuo, Q.: Interval-valued degrees of belief: applications of interval computations to expert systems and intelligent control. Int. Journal of Uncertainty, Fuzziness, and Knowledge-Based Systems 5(3), 317–358 (1997)
Sambuc, R.: Fonctions φ-floues. Application l’aide au diagnostic en pathologie thyroidienne. PhD thesis, Univ. Marseille, Marseille (1975)
Turksen, I.: Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems 20, 191–210 (1986)
Gasse, B.V., Cornelis, G., Deschrijver, G., Kerre, E.: On the properties of a generalized class of t-norms in interval-valued fuzzy logics. New Math. and Natural Comput. 2, 29–42 (2006)
Lodwick, W.A.: Preface. Reliable Computing 10(4), 247–248 (2004)
Moore, R.E.: Interval Arithmetic and Automatic Error Analysis in Digital Computing. PhD thesis, Stanford University, Stanford (1962)
Kearfort, R.B., Kreinovich, V. (eds.): Applications of Interval Computations. Kluwer Academic Publishers, Boston (1996)
Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman&Hall, London (1991)
Walley, P.: Measures of uncertainty. Artificial Intelligence 83, 1–58 (1996)
Bedregal, B.C., Santiago, R.H.N., Reiser, R.H.S., Dimuro, G.P.: The best interval representation of fuzzy Simplications and automorphisms. In: Proc. of the IEEE Intl. Conf. on Fuzzy Systems, Londres, pp. 3220–3230. IEEE, Los Alamitos (2007)
Bedregal, B.C., Santiago, R.H.N., Reiser, R.H.S., Dimuro, G.P.: Analyzing properties of fuzzy implications obtained via the interval constructor. In: IEEE Post-Proceedings of SCAN 2006: Revised Setected Papers of 12th GAMM - IMACS Intl. Symp. Scientific Computing, Computer Arithmetic and Validated Numerics, Duisburg, paper no. 13. IEEE, Los Alamitos (2007)
Bedregal, B.C., Santiago, R.H.N., Reiser, R.H.S., Dimuro, G.P.: Properties of fuzzy implications obtained via the interval constructor. TEMA 8(1), 33–42 (2007), http://www.sbmac.org.br/tema
Bedregal, B.C., Santiago, R.H.N., Dimuro, G.P., Reiser, R.H.S.: Interval valued R-implications and automorphisms. In: Pre-Proceedings of the 2nd Work. on Logical and Semantic Frameworks, with Applications, Ouro Preto, pp. 82–97 (2007)
Reiser, R.H.S., Dimuro, G.P., Bedregal, B., Santiago, R.: Interval valued QL-implications. In: Leivant, D., de Queiroz, R. (eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 307–321. Springer, Heidelberg (2007)
Bedregal, B., Takahashi, A.: The best interval representation of t-norms and automorphisms. Fuzzy Sets and Systems 157(24), 3220–3230 (2006)
Bedregal, B., Takahashi, A.: Interval valued versions of t-conorms, fuzzy negations and fuzzy implications. In: IEEE Proc. Intl. Conf. on Fuzzy Systems, Vancouver, Los Alamitos, pp. 9553–9559 (2006)
Santiago, R., Bedregal, B., Acióly, B.: Formal aspects of correctness and optimality in interval computations. Formal Aspects of Computing 18(2), 231–243 (2006)
Hickey, T., Ju, Q., Emdem, M.: Interval arithmetic: from principles to implementation. Journal of the ACM 48(5), 1038–1068 (2001)
Callejas-Bedregal, R., Bedregal, B.C.: Intervals as a domain constructor. TEMA 2(1), 43–52 (2001), http://www.sbmac.org.br/tema
Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D., Maimbaum, T. (eds.) Handbook of Logic in Computer Science, vol. 3. Oxford Svience Publications (1994)
Gierz, G., Hoffman, K., Keimel, K., Lawson, J., Scott, D.: Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)
Kearfott, R.B.: Rigorous Global Search: Continuous problems. Kluwer, Dordrecht (1996)
Caprani, O., Madsen, K., Stauning, O.: Existence test for asynchronous interval iteration. Reliable Computing 3(3), 269–275 (1997)
Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analisys: With examples in parameter and state estimation, robust control and robotic. Springer, Heidelberg (2001)
Deschrijver, G.: Additive and multiplicative generators in interval-valued fuzzy set theory. IEEE Transactions on Fuzzy Systems 15(2), 1063–6706 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dimuro, G.P., Bedregal, B.C., Reiser, R.H.S., Santiago, R.H.N. (2008). Interval Additive Generators of Interval T-Norms. In: Hodges, W., de Queiroz, R. (eds) Logic, Language, Information and Computation. WoLLIC 2008. Lecture Notes in Computer Science(), vol 5110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69937-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-69937-8_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69936-1
Online ISBN: 978-3-540-69937-8
eBook Packages: Computer ScienceComputer Science (R0)