Input Signals Normalization in Kohonen Neural Networks | SpringerLink
Skip to main content

Input Signals Normalization in Kohonen Neural Networks

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2008 (ICAISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5097))

Included in the following conference series:

  • 1702 Accesses

Abstract

In this paper a Kohonen self-organizing competitive algorithm is considered. A formal approach to classification problem, basing on equivalence relations, is proposed. The Kohonen neural networks are considered as classifying systems. The main topic of this paper is proposal of applying stereographic projection as an input signals normalization procedure. Both theoretical justification is discussed and results of experiments are presented. It turns out that the introduced normalization procedure is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auslander, L., MacKenzie, R.E.: Introduction to Differentiable Manifolds. McGraw-Hill, New York (1963)

    MATH  Google Scholar 

  2. Baran, J.: Self-organizing mappings. In: Rutkowski, L. (ed.) Wydawnictwo Politechniki Czêstochowskiej, Czȩstochowa, pp. 55–81 (1996) (in Polish)

    Google Scholar 

  3. Bielecki, A.: Mathematical foundations of artificial neural networks. Matematyka Stosowana 4(45), 25–55 (2003) (in Polish)

    MathSciNet  Google Scholar 

  4. Connor, C.E.: Friends and grandmothers. Nature 435, 1036–1037 (2005)

    Article  Google Scholar 

  5. Demartines, P., Blayo, F.: Kohonen self-organizing map: is the normalization necessary? Complex Systems 6, 105–123 (1992)

    MATH  Google Scholar 

  6. Erwin, E., Obermayer, K., Schulten, K.L.: Self-organizing maps: stationary states, metastability and convergence rate. Biological Cybernetics 67, 35–45 (1992)

    Article  MATH  Google Scholar 

  7. Erwin, E., Obermayer, K., Schulten, K.L.: Self-organizing maps: ordering, convergence properties and energy functions. Biological Cybernetics 67, 47–55 (1992)

    Article  MATH  Google Scholar 

  8. Gancarzewicz, J.: Differential Geometry, PWN, Warszawa (1987) (in Polish)

    Google Scholar 

  9. Gancarzewicz, J., Opozda, B.: Introduction to Differential Geometry. Jagiellonian University Press, Kraków (2003) (in Polish)

    Google Scholar 

  10. Kohonen, T.: Self-organizing formation of topologically correct feature maps. Biological Cybernetics 43, 59–69 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kohonen, T.: Analysis of a simple self-organizing process. Biological Cybernetics 44, 135–140 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kohonen, T.: Self-Organization and Associative Memory. Information Sciences, vol. 8. Springer, Berlin (1984)

    MATH  Google Scholar 

  13. Kohonen, T.: Adaptive, associative and self-organizing functions in neural computing. Appl. Optics 26, 4910–4918 (1987)

    Article  Google Scholar 

  14. Kohonen, T.: The self-organizing maps. Proc. IEEE 78, 1464–1480 (1990)

    Article  Google Scholar 

  15. Korbicz, J., Obuchowicz, A., Uciński, D.: Artificial Neural Networks - Foundations and Applications, Akademicka Oficyna Wydawnicza, Warszawa (1994) (in Polish)

    Google Scholar 

  16. McCoulloch, W.S., Pitts, W.H.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)

    Article  Google Scholar 

  17. Osowski, S.: Neural Networks - an Algorithmic Approach, WNT, Warszawa (1996) (in Polish)

    Google Scholar 

  18. Osowski, S.: Neural Networks for Information Processing, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa (2006) (in Polish)

    Google Scholar 

  19. Quiroga, R.Q., Reddy, L.R., Kreiman, G., Koch, C., Fried, I.: Invariant visual representation by single neurons in the human brain. Nature 435, 1002–1007 (2005)

    Article  Google Scholar 

  20. Rasiowa, H.: Introduction to Contemporary Mathematics, PWN, Warszawa (1998) (in Polish)

    Google Scholar 

  21. Ritter, H., Schulten, K.: Convergence properties of Kohonen’s topology conserving maps: fluctuations, stability and dimension selection. Biological Cybernetics 60, 59–71 (1989)

    MathSciNet  Google Scholar 

  22. Skubalska-Rafajłowicz, E.: Self-organizing neural networks. In: Duch, W., Korbicz, J., Rutkowski, L., Tadeusiewicz, R. (eds.) Biocybernetics and Biomedical Engineering, Nałȩcz M. - the series editor, Akademicka Oficyna Wydawnicza EXIT, Warszawa, vol. 6, pp. 179–226 (2000) (in Polish)

    Google Scholar 

  23. Sobczak, W., Malina, W.: Methods of selection and information reduction, WNT, Warszawa (1978) (in Polish)

    Google Scholar 

  24. Tadeusiewicz, R.: Neural Networks, Akademicka Oficyna Wydawnicza, Warszawa (1993) (in Polish)

    Google Scholar 

  25. Tadeusiewicz, R.: Biocybernetics Problems, PWN, Warszawa (1994) (in Polish)

    Google Scholar 

  26. Tolat, V.V.: An analysis of Kohonen’s self-organizing maps using a system of energy functions. Biological Cybernetics 64, 155–164 (1990)

    Article  MATH  Google Scholar 

  27. Waxman, S.G.: Regional differentation of the axon: A review with special reference to the concept of the multiplex neuron. Brain Research 47, 269–288 (1972)

    Article  Google Scholar 

  28. Wilshaw, D.J., Malsburg, C.: How pattern neural connections can be set up by a self-organization. Proc. Royal Society of London B-194, 431–445 (1976)

    Google Scholar 

  29. Żurada, J., Barski, M., Jȩdruch, W.: Artificial Neural Networks, PWN, Warszawa (1992) (in Polish)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Leszek Rutkowski Ryszard Tadeusiewicz Lotfi A. Zadeh Jacek M. Zurada

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bielecki, A., Bielecka, M., Chmielowiec, A. (2008). Input Signals Normalization in Kohonen Neural Networks. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69731-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69572-1

  • Online ISBN: 978-3-540-69731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics