Multimedia Retrieval Algorithmics | SpringerLink
Skip to main content

Multimedia Retrieval Algorithmics

  • Conference paper
SOFSEM 2007: Theory and Practice of Computer Science (SOFSEM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4362))

Abstract

After text retrieval, the next waves in web searching and multimedia retrieval are the search for and delivery of images, music, video, and 3D scenes. Not only the perceptual and cognitive aspects, but also many of the algorithmic and performance aspects are still badly understood. One relevant issue is the design of dissimilarity measures (distance functions) that have desired properties. Another aspect is the development of algorithms that can compute or approximate these distances efficiently. Indexing data structures and search algorithms are necessary to make the search more efficient than sequential browsing through large collections. Apart from provable properties of individual algorithms, the experimental verification of the performance of a complete retrieval system is important to analyse merits and drawbacks of certain approaches, and to compare various techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-Based Image Retrieval at the End of the Early Years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  2. Veltkamp, R.C., Tanase, M.: A Survey of Content-Based Image Retrieval Systems. In: Marques, O., Furht, B. (eds.) Content-Based Image and Video Retrieval, pp. 47–101. Kluwer, Norwell (2002)

    Google Scholar 

  3. Moret, B.: Towards a Discipline of Experimental Algorithmics. In: Goldwasser, M., Johnson, D., McGeoch, C. (eds.) Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges. DIMACS Monographs, vol. 59, pp. 197–213. American Mathematical Society, Providence (2002)

    Google Scholar 

  4. Biederman, I.: Recognition-by-Components: A Theory of Human Image Understanding. Psychological Review 94(2), 115–147 (1987)

    Article  Google Scholar 

  5. Tănase, M., Veltkamp, R.C., Haverkort, H.J.: Multiple Polyline to Polygon Matching. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 60–70. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Bober, M., Kim, J.D., Kim, H.K., Kim, Y.S., Kim, W.Y., and Muller, K.: Summary of the Results in Shape Descriptor Core Experiment, iso/iec jtc1/sc29/wg11/mpeg99/m4869 (1999)

    Google Scholar 

  7. Latecki, L.J., Lakaemper, R., Eckhardt, U.: Shape Descriptors for Non-Rigid Shapes with a Single Closed Contour. In: Proc. Conference on Computer Vision and Pattern Recognition (CVPR), pp. 424–429 (2000)

    Google Scholar 

  8. Mokhtarian, F., Abbasi, S., Kittler, J.: Efficient and Robust Retrieval by Shape Content through Curvature Scale Space. In: Proceedings of IDB-MMS’96, pp. 35–42 (1996)

    Google Scholar 

  9. Tanase, M.: Shape Deomposition and Retrieval. PhD Thesis, Utrecht University, Department of Computer Science (2005)

    Google Scholar 

  10. Veltkamp, R.C., Latecki, L.J.: Properties and Performances of Shape Similarity Measures. In: Batagelj, et al. (ed.) Data Science and Classification, Proceedings of the IFCS 2006 Conference, pp. 47–56. Springer, Heidelberg (2006)

    Google Scholar 

  11. Typke, R., Veltkamp, R.C., Wiering, F.: A Measure for Evaluating Retrieval Techniques Based on Partially Ordered Ground Truth Lists. In: Proceedings International Conference on Multimedia & Expo, ICME (2006)

    Google Scholar 

  12. Järvelin, K., Kekäläinen, J.: Cumulated Gain-Based Evaluation of IR Techniques. ACM Transactions on Information Systems 20(4), 422–446 (2002)

    Article  Google Scholar 

  13. Vleugels, J., Veltkamp, R.C.: Efficient Image Retrieval through Vantage Objects. Pattern Recognition, pp. 69–80 (2002)

    Google Scholar 

  14. Henning, C., Latecki, L.J.: The Choice of Vantage Objects for Image Retrieval. Pattern Recognition, pp. 2187–2196 (2003)

    Google Scholar 

  15. van Leuken, R.H., Veltkamp, R.C., Typke, R.: Selecting Vantage Objects for Similarity Indexing. In: Proceedings of the 18th International Conference on Pattern Recognition, ICPR (2006)

    Google Scholar 

  16. Giannopoulos, P., Veltkamp, R.C.: A Pseudo-Metric for Weighted Point Sets. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 715–730. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Rubner, Y.: Perceptual Metrics for Image Database Navigation. PhD Thesis, Stanford University, Department of Computer Science (1999)

    Google Scholar 

  18. Bosma, M., Veltkamp, R.C., Wiering, F.: Muugle: A Music Retrieval Experimentation Framework. In: Proceedings of the 9th International Conference on Music Perception and Cognition, pp. 1297–1303 (2006)

    Google Scholar 

  19. Répertoire International des Sources Musicales (RISM): Serie A/II, manuscrits musicaux après 1600. K.G. Saur Verlag, München (2002)

    Google Scholar 

  20. Typke, R., Giannopoulos, P., Veltkamp, R.C., Wiering, F., van Oostrum, R.: Using Transportation Distances for Measuring Melodic Similarity. In: Proceedings of the Fourth International Conference on Music Information Retrieval (ISMIR 2003), pp. 107–114 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan van Leeuwen Giuseppe F. Italiano Wiebe van der Hoek Christoph Meinel Harald Sack František Plášil

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Veltkamp, R.C. (2007). Multimedia Retrieval Algorithmics. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds) SOFSEM 2007: Theory and Practice of Computer Science. SOFSEM 2007. Lecture Notes in Computer Science, vol 4362. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69507-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69507-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69506-6

  • Online ISBN: 978-3-540-69507-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics