Detection of Weak Signals by Emotion-Derived Stochastic Resonance | SpringerLink
Skip to main content

Detection of Weak Signals by Emotion-Derived Stochastic Resonance

  • Conference paper
From Animals to Animats 10 (SAB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5040))

Included in the following conference series:

Abstract

This paper reports a new finding on functionalities of trembling, the bodily manifestation of fear and joy. We consider trembling of a physically-simulated agent consisting of a vision system and a neural system. It is demonstrated that the noise to visual streams generated by trembling enhances signal to noise ratio of the neural system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Darwin, C.: The Expression of the Emotions in Man and Animals, 3rd edn. Oxford University Press, Oxford (1996)

    Google Scholar 

  2. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  3. Damasio, A.R.: Descartes’ Error: Emotion, Reason, and the Human Brain. Grosset/Putnam (1994)

    Google Scholar 

  4. Sartre, J.-P.: Sketch for a Theory of the Emotions. Taylor and Francis, Abington (1971)

    Google Scholar 

  5. James, W.: What is an emotion? Mind 9(34), 188–205 (1884)

    Article  Google Scholar 

  6. LeDoux, J.: The Emotional Brain: the Mysterious Underpinnings of Emotional Life. Simon and Schuster (1996)

    Google Scholar 

  7. Ekman, P., Friesen, W.V.: Unmasking the Face. Prentice Hall, Englewood Cliffs (1957)

    Google Scholar 

  8. Ehlers, A., Margraf, J., Rotch, W.T., Taylor, B., Birbaumer, N.: Anxiety induced by false heart rate feedback in patients with panic disorder. Behaviour research and therapy 26(1), 1–11 (1988)

    Article  Google Scholar 

  9. Cannon, W.B.: Bodily Changes in Pain, Hunger, Fear and Rage: An Account of Recent Researches into the Function of Emotional Excitement. Appleton, New York (1915)

    Google Scholar 

  10. Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373(5), 33–36 (1995)

    Article  Google Scholar 

  11. Mitaim, S., Kosko, B.: Adaptive stochastic resonance. Proceedings of the IEEE 86(11), 2152–2183 (1998)

    Article  Google Scholar 

  12. Wang, S., Liu, F., Wang, W.: Impact of spatially correlated noise on neural firing. Physical Review E 69, 011909 (2004)

    Article  Google Scholar 

  13. Hamaguchi, K., Okada, M., Kubota, S., Aihara, K.: Stochastic resonance of localized activity driven by common noise. Biological Cybernetics 92, 438–444 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nozaki, D., Collins, J.J., Yamamoto, Y.: Mechanism of stochastic resonance enhancement in neuronal models driven by 1/f noise. Physical Review E 60(4), 4637–4644 (1999)

    Article  Google Scholar 

  15. Kosko, B., Mitaim, S.: Stochastic resonance in noisy threshold neurons. Neural Networks 16, 755–761 (2003)

    Article  Google Scholar 

  16. Inchiosa, M.E., Bulsara, A.R.: Nonlinear dynamic elements with noisy sinusoidal forcing: Enhancing response via nonlinear coupling. Physical Review E 52(1), 327–339 (1995)

    Article  Google Scholar 

  17. Beer, R.D.: Dynamical approaches to cognitive science. Trends in Cognitive Science 4(3), 91–99 (2000)

    Article  Google Scholar 

  18. Cañamero, L.: Emotion understanding from the perspective of autonomous robots research. Neural Networks 18, 445–455 (2005)

    Article  Google Scholar 

  19. Adolph, K.: Specificity of learning: Why infants fall over a veritable cliff. Psychological Science 11, 290–295 (2000)

    Article  Google Scholar 

  20. Adolphs, R., Gosselin, F., Buchanan, T.W., Tranel, D., Schyns, P., Damasio, A.R.: A mechanism for impaired fear recognition after amygdala damage. Nature 433(6), 68–72 (2005)

    Article  Google Scholar 

  21. Burton, G., Turvey, M.T.: Perceiving the lengths of rods that are held but not wielded. Ecological Psychology 2(4), 295–324 (1990)

    Article  Google Scholar 

  22. Joseph, R.: Environmental influences on neural platicity, the limbic system, emotional developmental and attachment: a review. Child Psychiatry Hum. Dev. 29, 189–208 (1999)

    Article  Google Scholar 

  23. Blackmore, S.-J., Wolpert, D.M., Frith, C.D.: Central cancellation of self-produced tickle sensation. Nature Neuroscience 1(7), 635–640 (1998)

    Article  Google Scholar 

  24. Schultz, W., Dayan, P., Montague, P.R.: A neural substrate of prediction and reward. Science 275, 1593–1599 (1997)

    Article  Google Scholar 

  25. Schultz, W.: Predictive reward signal of dopamine neurons. Journal of Neurophysiology 80, 1–27 (1998)

    Google Scholar 

  26. Yu, J.A., Dayan, P.: Acetylcholine in cortical inference. Neural Networks 15, 719–730 (2002)

    Article  Google Scholar 

  27. Goldman, M.S., Golowasch, J., Marder, E., Abbott, L.F.: Global structure, robustness, and modulation of neuronal models. The Journal of Neuroscience 21(14), 5229–5238 (2001)

    Google Scholar 

  28. Lungarella, M., Pegors, T., Bulwinkle, D., Sporns, O.: Methods for quantifying the information structure of sensory and motor data. Neuroinformatics 3, 243–262 (2005)

    Article  Google Scholar 

  29. Doya, K.: Metalearning and neuromodulation. Neural Networks 15, 495–506 (2002)

    Article  Google Scholar 

  30. Doya, K., Uchibe, E.: The cyber rodent project: Exploration of adaptive mechanisms for self-preservation and self-reproduction. Adaptive Behavior 13(2), 149–160 (2005)

    Article  Google Scholar 

  31. Levenson, R.W.: Autonomic Nervous System Differences among Emotions. Psychological Science 3, 23–27 (1992)

    Article  Google Scholar 

  32. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic Resonance. Reviews of Modern Physics 70(1), 223–287 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Minoru Asada John C. T. Hallam Jean-Arcady Meyer Jun Tani

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yonekura, S., Kuniyoshi, Y., Kawaguchi, Y. (2008). Detection of Weak Signals by Emotion-Derived Stochastic Resonance. In: Asada, M., Hallam, J.C.T., Meyer, JA., Tani, J. (eds) From Animals to Animats 10. SAB 2008. Lecture Notes in Computer Science(), vol 5040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69134-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69134-1_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69133-4

  • Online ISBN: 978-3-540-69134-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics