Robust Impedance Control of a Delayed Telemanipulator Considering Hysteresis Nonlinearity of the Piezo-actuated Slave Robot | SpringerLink
Skip to main content

Robust Impedance Control of a Delayed Telemanipulator Considering Hysteresis Nonlinearity of the Piezo-actuated Slave Robot

  • Conference paper
Haptics: Perception, Devices and Scenarios (EuroHaptics 2008)

Abstract

The slave robot in this research is a 1-DOF piezo actuatorwhich includes hysteresis nonlinearity. Nonlinear hysteresis behavior makes robot control a complex task. In this research, the nonlinear and uncertain dynamics of the slave robot has been considered through the teleoperation control loop. LuGre friction model is used as the estimator of the hysteresis loop. An impedance controller for the master side and a sliding-mode-based impedance controller for the slave side have been proposed. The latter is a sliding mode controller, because the plant is nonlinear and uncertain. Also, it is an impedance controller providing both high performances during contact and excellent tracking in free space motion. These controllers make teleoperator robustly stable against uncertainties and bounded constant time delay. Meanwhile, scaling factors, known as sources of instability, have no disturbing effect. After canceling the nonlinear term out of the teleoperator by the controllers, stability of the entire system will be guaranteed by Llewellyn’s absolute stability criterion. Performance of the proposed controllers is investigated through simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kawaji, A., Arai, F., Fukuda, T.: Calibration for contact type of Micro-manipulation. In: Proc. of 1999 IEEE/RSJ Intern. Conf. on Intelligent Robotic (1999)

    Google Scholar 

  2. Yu, S., Nelson, B.J.: Microrobotic cell injection. IROS, Seoul, Korea, pp.620-625 (2001)

    Google Scholar 

  3. Bergander, A., Breguet, J.M., perez, R., clavel, R.: PZT based manipulators for cell biology. In: Int. symp. on micromechatronics and human science, Nagoya, Japan, pp. 193–196 (2001)

    Google Scholar 

  4. Mittal, G.S., Menq, C.H.: Hysteresis compensation in electromagnetic actuators through preisach model inversion. IEEE/ASME Trans.Mechatron 5(4), 394–409 (2000)

    Article  Google Scholar 

  5. Hwang, L., Jan, C.: A reinforcement discrete neuro-adaptive control for unknown piezoelectric actuator systems with dominant hysteresis. IEEE Trans. Neural Netw. 14(1), 66–78 (2003)

    Article  Google Scholar 

  6. Smith, C., Hashtrudi-Zaad, K.: Neural network-based teleoperation using Smith predictors. In: IEEE International Conference on Mechatronics and Automation, vol. 3, pp. 1654–1659 (July 2005)

    Google Scholar 

  7. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  8. Lin, J., Shieh, H.J., Huang, P.K.: Adaptive Wavelet Neural Network Control with Hysteresis Estimation for Piezo-Positioning Mechanism. IEEE Trans. On Neural Networks 17(2) (March 2006)

    Google Scholar 

  9. Buttolo, P., Braathern, P., Hannaford, B.: Sliding Control of Force Reflecting Teleoperation: Preliminary Studies. PRESENCE 3(2), 158–172 (1994)

    Google Scholar 

  10. Park, J.H., Cho, H.C.: Sliding-Mode Controller for Bilateral Teleoperation with Varying Time Delay. In: Proceedings of the 1999 IEEEIASME International Conference on Advanced Intelligent Mechatronics (September 1999)

    Google Scholar 

  11. Cho, H.C., Park, J.H.: Sliding-Mode-Based Impedance Controller for Bilateral Teleoperation under Varying Time-Delay. In: Proceedings of the 2001 IEEE International Conf. on Robotics & Automation Seoul, Korea (May 2001)

    Google Scholar 

  12. Niemeyer, G., Slotine, J.J.E.: Stable Adaptive Teleoperation. IEEE Journal of Oceanographic Engineering 16(1), 152–162 (1991)

    Article  Google Scholar 

  13. Niemeyer, G., Slotine, J.J.E.: Designing force reflecting teleoperation with large time delays to appear as virtual tools. In: Proc. Of IEEE Int. Conf. on Robotic and Automation, pp. 2212–2218 (1997)

    Google Scholar 

  14. Niemeyer, G., Slotine, J.J.E.: Towards Force-Reflecting Teleoperation over the Internet. In: Proc. Of 1998 IEEE Int. Conf. on Robotic and Automation, pp. 1909–1915 (1998)

    Google Scholar 

  15. Lee, D., Spong, M.N.: Passive Bilateral Teleoperation with Constant Time Delay. IEEE Trans. On Robotics 22(2) (April 2006)

    Google Scholar 

  16. Boukhnifer, M., Ferreira, A.: Bilateral Control of Teleoperators under Time Delay and Scaling Factors. In: Proc. Of the 44th IEEE Conf. on Decision and Control and the European Control Conf. (2005)

    Google Scholar 

  17. Boukhnifer, M., Ferreira, A.: Wave-based passive Control for transparent Micro-teleoperation system. Elsevier journal of robotics and Autonomous Systems, 601–615 (2006)

    Google Scholar 

  18. Haykin, S.S.: Active network theory. Addison-Wesley, Reading (1970)

    MATH  Google Scholar 

  19. de Wit, C., Olsson, H., Aström, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Auto. Control 40(3), 419–425 (1995)

    Article  MATH  Google Scholar 

  20. Slotine, J.J.E., Li, W.: Applied nonlinear control, pp. 715–720. Prentice-Hall, Korea (1991)

    MATH  Google Scholar 

  21. Cho, H.C., Park, J.H.: Impedance controller design of internet-based teleoperation using absolute stability concept. In: IEEE/RJS Intl. conference on intelligent robotics and systems (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manuel Ferre

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seifabadi, R. et al. (2008). Robust Impedance Control of a Delayed Telemanipulator Considering Hysteresis Nonlinearity of the Piezo-actuated Slave Robot. In: Ferre, M. (eds) Haptics: Perception, Devices and Scenarios. EuroHaptics 2008. Lecture Notes in Computer Science, vol 5024. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69057-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69057-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69056-6

  • Online ISBN: 978-3-540-69057-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics