Abstract
In 2000, Paulus and Takagi introduced a public key cryptosystem called NICE that exploits the relationship between maximal and non-maximal orders in imaginary quadratic number fields. Relying on the intractability of integer factorization, NICE provides a similar level of security as RSA, but has faster decryption. This paper presents REAL-NICE, an adaptation of NICE to orders in real quadratic fields. REAL-NICE supports smaller public keys than NICE, and while preliminary computations suggest that it is somewhat slower than NICE, it still significantly outperforms RSA in decryption.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Buchmann, J., Sakurai, K., Takagi, T.: An IND-CCA2 public-key cryptosystem with fast decryption. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 51–71. Springer, Heidelberg (2002)
Buchmann, J., Thiel, C., Williams, H.: Short representation of quadratic integers. In: Computational Algebra and Number Theory (Sydney, 1992). Math. Appl., vol. 325, pp. 159–185. Kluwer, Dordrecht (1995)
Cheng, K.H.F., Williams, H.C.: Some results concerning certain periodic continued fractions. Acta Arith. 117, 247–264 (2005)
Cox, D.A.: Primes of the Form x 2 + ny 2. John Wiley & Sons, Inc, New York (1989)
Hardy, G.H., Littlewood, J.E.: Partitio numerorum III: On the expression of a number as a sum of primes. Acta Math. 44, 1–70 (1923)
Hühnlein, D., Jacobson Jr., M.J., Paulus, S., Takagi, T.: A cryptosystem based on non-maximal imaginary quadratic orders with fast decryption. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 294–307. Springer, Heidelberg (1998)
Jaulmes, E., Joux, A.: A NICE Cryptanalysis. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 382–391. Springer, Heidelberg (2000)
Jacobson Jr., M.J., Scheidler, R., Stein, A.: Cryptographic protocols on real hyperelliptic curves. Adv. Math. Commun. 1, 197–221 (2007)
Jacobson Jr., M.J., Sawilla, R.E., Williams, H.C.: Efficient Ideal Reduction in Quadratic Fields. Internat. J. Math. Comput. Sci. 1, 83–116 (2006)
Lenstra, A.K.: Unbelievable Security. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 67–86. Springer, Heidelberg (2001)
Mollin, R.A., Williams, H.C.: Computation of the class number of a real quadratic field. Util. Math. 41, 259–308 (1992)
National Institute of Standards and Technology (NIST), Recommendation for key management - part 1: General (revised). NIST Special Publication 800-57 (March 2007), http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf
Paulus, S., Takagi, T.: A new public key cryptosystem over quadratic orders with quadratic decryption time. J. Cryptology 13, 263–272 (2000)
van der Poorten, A.J., te Riele, H.J.J., Williams, H.C.: Computer verification of the Ankeny-Artin-Chowla conjecture for all primes less than 100 000 000 000. Math. Comp. 70, 1311–1328 (2001)
Schinzel, A.: On some problems of the arithmetical theory of continued fractions. Acta Arith. 6, 393–413 (1961)
Shoup, V.: NTL: A Library for Doing Number Theory. Software (2001), Available at http://www.shoup.net/ntl
Takagi, T.: Fast RSA-type cryptosystem modulo p k q. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998)
Takagi, T.: A New Public-Key Cryptosystems with Fast Decryption. PhD Thesis, Technische Universität Darmstadt (Germany) (2001)
Weimer, D.: An Adaptation of the NICE Cryptosystem to Real Quadratic Orders. Master’s Thesis, Technische Universität Darmstadt (Germany) (2004), http://www.cdc.informatik.tu-darmstadt.de/reports/reports/DanielWeimer.diplom.pdf
Williams, H.C.: Édouard Lucas and Primality Testing. John Wiley & Sons, New York (1998)
Williams, H.C., Wunderlich, M.C.: On the parallel generation of the residues for the continued fraction factoring algorithm. Math. Comp. 48, 405–423 (1987)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jacobson, M.J., Scheidler, R., Weimer, D. (2008). An Adaptation of the NICE Cryptosystem to Real Quadratic Orders. In: Vaudenay, S. (eds) Progress in Cryptology – AFRICACRYPT 2008. AFRICACRYPT 2008. Lecture Notes in Computer Science, vol 5023. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68164-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-68164-9_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68159-5
Online ISBN: 978-3-540-68164-9
eBook Packages: Computer ScienceComputer Science (R0)