An Extensible Timing Infrastructure for Adaptive Large-Scale Applications | SpringerLink
Skip to main content

An Extensible Timing Infrastructure for Adaptive Large-Scale Applications

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4967))

Abstract

Real-time access to accurate and reliable timing information is necessary to profile scientific applications, and crucial as simulations become increasingly complex, adaptive, and large-scale. The Cactus Framework provides flexible and extensible capabilities for timing information through a well designed infrastructure and timing API . Applications built with Cactus automatically gain access to built-in timers, such as gettimeofday and getrusage , system-specific hardware clocks, and high-level interfaces such as PAPI. We describe the Cactus timer interface, its motivation, and its implementation. We then demonstrate how this timing information can be used by an example scientific application to profile itself, and to dynamically adapt itself to a changing environment at run time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Report from NSF DDDAS Workshop, Washington (January 2006), http://www.nsf.gov/cise/cns/dddas/2006_Workshop/wkshp_report.pdf

  2. The Performance API (PAPI), http://icl.cs.utk.edu/projects/papi/

  3. Cactus Computational Toolkit, http://www.cactuscode.org/

  4. Goodale, T., Allen, G., Lanfermann, G., Massó, J., Radke, T., Seidel, E., Shalf, J.: The Cactus framework and toolkit: Design and applications. In: Palma, J.M.L.M., Sousa, A.A., Dongarra, J., Hernández, V. (eds.) VECPAR 2002. LNCS, vol. 2565, pp. 197–227. Springer, Heidelberg (2003)

    Google Scholar 

  5. Allen, G., Goodale, T., Lanfermann, G., Radke, T., Rideout, D., Thornburg, J.: Cactus Users’ Guide (2004)

    Google Scholar 

  6. Allen, G., Angulo, D., Foster, I., Lanfermann, G., Liu, C., Radke, T., Seidel, E., Shalf, J.: The Cactus Worm: Experiments with dynamic resource discovery and allocation in a grid environment. Int. J. of High Performance Computing Applications 15(4) (2001)

    Google Scholar 

  7. Allen, G., Dramlitsch, T., Foster, I., Karonis, N., Ripeanu, M., Seidel, E., Toonen, B.: Supporting efficient execution in heterogeneous distributed computing environments with Cactus and Globus. In: Proceedings of Supercomputing 2001 (2001)

    Google Scholar 

  8. Goodale, T., Jha, S., Kaiser, H., Kielmann, T., Kleijer, P., von Laszewski, G., Lee, C., Merzky, A., Rajic, H., Shalf, J.: SAGA: A Simple API for Grid Applications – High-Level Application Programming on the Grid. Computational Methods in Science and Technology 8(2) (2005)

    Google Scholar 

  9. Alcubierre, M., Brügmann, B., Dramlitsch, T., Font, J.A., Papadopoulos, P., Seidel, E., Stergioulas, N., Takahashi, R.: Towards a stable numerical evolution of strongly gravitating systems in general relativity: The conformal treatments. Phys. Rev. D 62, 044034 (2000)

    Google Scholar 

  10. Schnetter, E., Hawley, S.H., Hawke, I.: Evolutions in 3D numerical relativity using fixed mesh refinement. Class. Quantum Grav. 21(6), 1465–1488 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Adaptive mesh refinement with Carpet, http://www.carpetcode.org/

  12. Berman, F., et al.: New grid scheduling and rescheduling methods in the grads project. Int. J. Parallel Program. 33(2), 209–229 (2005)

    Article  Google Scholar 

  13. Vetter, J.S.: Experiences with computational steering on existing scientific applications. In: Parallel Processing for Scientific Computing (1999)

    Google Scholar 

  14. Reed, D.A., Mendes, C.L.: Intelligent monitoring for adaptation in grid applications. Proceedings of the IEEE 93(2), 426–435 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roman Wyrzykowski Jack Dongarra Konrad Karczewski Jerzy Wasniewski

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stark, D., Allen, G., Goodale, T., Radke, T., Schnetter, E. (2008). An Extensible Timing Infrastructure for Adaptive Large-Scale Applications. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2007. Lecture Notes in Computer Science, vol 4967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68111-3_124

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68111-3_124

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68105-2

  • Online ISBN: 978-3-540-68111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics