Distributed Edge Coloration for Bipartite Networks | SpringerLink
Skip to main content

Distributed Edge Coloration for Bipartite Networks

  • Conference paper
Stabilization, Safety, and Security of Distributed Systems (SSS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4280))

Included in the following conference series:

Abstract

This paper develops a distributed algorithm to color the edges of a bipartite network in such a way that any two adjacent edges receive distinct colors. The algorithm has the self-stabilizing property. It works with an arbitrary initialization. Its execution model is assumed to be the central daemon, and its time complexity is O(n 2 m) moves, where n and m are the number of nodes and the number of edges, respectively.

This research was supported in part by the National Science Council of the Republic of China under the Contract NSC94-2213-E008-001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17, 643–644 (1974)

    Article  MATH  Google Scholar 

  2. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Durand, D., Jain, R., Tseytlin, D.: Parallel I/O scheduling using randomized, distributed edge coloring algorithms. Journal of parallel and distributed computing 63, 611–618 (2003)

    Article  MATH  Google Scholar 

  4. Herman, T., Pirwani, I., Pemmaraju, S.: Oriented edge colorings and link scheduling in sensor networks. In: International Conference on communication Software and Middleware, pp. 1–6 (2006)

    Google Scholar 

  5. König, D.: Über graphen und ihre anwendung auf determinententheorie und mengenlehre. Math. Ann 77, 453–465 (1916)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gabow, H.N., Kariv, O.: Algorithms for edge coloring bipartite graphs. In: Conference of the 10th annual ACM symposium on theory of computing, pp. 184–192 (1978)

    Google Scholar 

  7. Gabow, H.N., Kariv, O.: Algorithms for edge coloring bipartite graphs and multigraphs. SIAM Journal on Computing 11(1), 117–129 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Schrijver, A.: Bipartite edge coloring in Om) time. SIAM Journal on Computing 28, 841–846 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in O(E logD) time. Combinatorica 21(1), 5–12 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grable, D., Panconesi, A.: Nearly optimal distributed edge-coloring in O(loglogn) rounds. RSA 10(3), 385–405 (1997)

    MATH  MathSciNet  Google Scholar 

  11. Panconesi, A., Srinivasan, A.: Fast randomized algorithms for distributed edge coloring. SIAM Journal on Computing 26(2), 350–368 (1992)

    Article  MathSciNet  Google Scholar 

  12. Sakurai, Y., Ooshita, F., Masuzawa, T.: A Self-stabilizing Link-Coloring Protocol Resilient to Byzantine Faults in Tree Networks. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 283–298. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Masuzawa, T., Tixeuil, S.: A self-stabilizing link coloring algorithm resilient to unbounded byzantine faults in arbitrary networks. Technical report, Laboratoire de Recherche en Informatique (2005)

    Google Scholar 

  14. Chattopadhyay, S., Higham, L., Seyffarth, K.: Dynamic and self-stabilizing distributed matching. In: ACM symposium on principles of distributed computing, pp. 290–297 (2002)

    Google Scholar 

  15. Hsu, S.C., Huang, S.T.: A self-stabilizing algorithm for maximal matching. Information processing letters 24, 77–81 (1992)

    Article  MathSciNet  Google Scholar 

  16. Karaata, M.H., Saleh, K.A.: A distributed self-stabilizing algorithm for finding maximum matching. Computer systems science and engineering 3, 175–180 (2000)

    Google Scholar 

  17. Rizzi, R.: Konig’s edge coloring theorem without augmenting paths. Journal of graph theory 29, 87 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, ST., Tzeng, CH. (2006). Distributed Edge Coloration for Bipartite Networks. In: Datta, A.K., Gradinariu, M. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2006. Lecture Notes in Computer Science, vol 4280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49823-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49823-0_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49018-0

  • Online ISBN: 978-3-540-49823-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics